A switch from autophagy to apoptosis is implicated in chondrocytes during the osteoarthritis (OA) progression with currently unknown mechanism(s). In this study we utilized a flow fluid shear stress (FFSS) model in cultured chondrocytes and a unilateral anterior crossbite (UAC) animal model. We found that both FFSS and UAC actively induced endoplasmic reticulum stress (ERS) in the temporomandibular joints (TMJ) chondrocytes, as demonstrated by dramatic increases in expression of HSPA5, p-EIF2AK3, p-ERN1 and ATF6. Interestingly, both FFSS and UAC activated not only pro-death p-EIF2AK3-mediated ERS-apoptosis programs but also pro-survival p-ERN1-mediated autophagic flux in chondrocytes. Data from FFSS demonstrated that MTORC1, a downstream of p-ERN1, suppressed autophagy but promoted p-EIF2AK3 mediated ERS-apoptosis. Data from UAC model demonstrated that at early stage both the p-ERN1 and p-EIF2AK3 were activated and MTORC1 was inhibited in TMJ chondrocytes. At late stage, MTORC1-p-EIF2AK3-mediated ERS apoptosis were predominant, while p-ERN1 and autophagic flux were inhibited. Inhibition of MTORC1 by TMJ local injection of rapamycin in rats or inducible ablation of MTORC1 expression selectively in chondrocytes in mice promoted chondrocyte autophagy and suppressed apoptosis, and reduced TMJ cartilage loss induced by UAC. In contrast, MTORC1 activation by TMJ local administration of MHY1485 or genetic deletion of Tsc1, an upstream MTORC1 suppressor, resulted in opposite effects. Collectively, our results establish that aberrant mechanical loading causes cartilage degeneration by activating, at least in part, the MTORC1 signaling which modulates the autophagy and apoptosis programs in TMJ chondrocytes. Thus, inhibition of MTORC1 provides a novel therapeutic strategy for prevention and treatment of OA.
Biofilm is a natural form of bacterial growth ubiquitously in environmental niches. The biofilm formation results in increased resistance to negative environmental influences including resistance to antibiotics and antimicrobial agents. Quorum sensing (QS) is cell-to-cell communication mechanism, which plays an important role in biofilm development and balances the environment when the bacteria density becomes high. Due to the prominent points of biofilms implicated in infectious disease and the spread of multi-drug resistance, it is urgent to discover new antibacterial agents that can regulate biofilm formation and development. Accumulated evidences demonstrated that natural products from plants had antimicrobial and chemo-preventive properties in modulation of biofilm formation in the last two decades. This review will summarize recent studies on the discovery of natural anti-biofilm agents from plants with clear-cut mechanisms or identified molecular addresses, as well as some herbs with unknown mechanisms or unidentified bioactive ingredients. We also focus on the progression of techniques on the extraction and identification of natural anti-biofilm substances. Besides, anti-biofilm therapeutics undergoing clinical trials are discussed. These newly discovered natural anti-biofilm agents are promising candidates which could provide novel strategies for biofilm-associated infections.
β-Adrenoceptors are broadly distributed in various tissues of the body. Stress hormones regulate a panel of important physiological functions and disease states including cancer. Nicotine and its derivatives could stimulate the release of stress hormones from cancer cells, leading to the promotion of cancer development. β-Blockers have been widely used to control hypertension for decades. Recently, these agents could have significant implications in cancer therapy through blockade of adrenoceptors in tumour tissues. In this review, we summarize recent advancements about the influence of stress hormones, nicotine and β-adrenoceptors on cancer cell proliferation, apoptosis, invasion and metastasis, and also tumour vasculature normalization. Relevant signal pathways and potential value of β-blockers in the treatment of cancer are also discussed in this review.
The molecular mechanisms underlying the antineoplastic properties of metformin, a first-line drug for type 2 diabetes, remain elusive. Here we report that metformin induces genome-wide alterations in DNA methylation by modulating the activity of S-adenosylhomocysteine hydrolase (SAHH). Exposing cancer cells to metformin leads to hypermethylation of tumor-promoting pathway genes and concomitant inhibition of cell proliferation. Metformin acts by upregulating microRNA let-7 through AMPK activation, leading to degradation of H19 long noncoding RNA, which normally binds to and inactivates SAHH. H19 knockdown activates SAHH, enabling DNA methyltransferase 3B to methylate a subset of genes. This metformin-induced H19 repression and alteration of gene methylation are recapitulated in endometrial cancer tissue samples obtained from patients treated with antidiabetic doses of metformin. Our findings unveil a novel mechanism of action for the drug metformin with implications for the molecular basis of epigenetic dysregulation in cancer. This novel mechanism of action also may be occurring in normal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.