Capturing visual similarity among images is the core of many computer vision and pattern recognition tasks. This problem can be formulated in such a paradigm called metric learning. Most research in the area has been mainly focusing on improving the loss functions and similarity measures. However, due to the ignoring of geometric structure, existing methods often lead to sub-optimal results. Thus, several recent research methods took advantage of Wasserstein distance between batches of samples to characterize the spacial geometry. Although these approaches can achieve enhanced performance, the aggregation over batches definitely hinders Wasserstein distance's superior measure capability and leads to high computational complexity. To address this limitation, we propose a novel Deep Wasserstein Metric Learning framework, which employs Wasserstein distance to precisely capture the relationship among various images under ranking-based loss functions such as contrastive loss and triplet loss. Our method directly computes the distance between images, considering the geometry at a finer granularity than batch level. Furthermore, we introduce a new efficient algorithm using Sinkhorn approximation and Wasserstein measure coreset. The experimental results demonstrate the improvements of our framework over various baselines in different applications and benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.