ABSTRACT. This study was designed to show whether rat liver epithelial cells could undergo epithelial-mesenchymal transition (EMT), thereby directly contributing to liver fibrosis. The role of the ratio of transforming growth factor-β1 (TGF-β1)/bone morphogenetic protein-7 (BMP-7) was evaluated in the progression of EMT or mesenchymal-epithelial transition. Primary rat liver epithelial cells were stimulated with different ratios of TGF-β1/BMP-7 and examined for evidence of transition to a mesenchymal or epithelial phenotype. Liver sections were labeled to detect antigens associated with liver epithelial cells [E-cadherin (E-cad)], EMT [fibroblast-specific protein-1 (FSP-1), vimentin], myofibroblasts [α-smooth muscle actin (α-SMA)], and intracellular signal-transduction mediated by forming liver fibrosis undergo EMT, resulting in the formation of invasive fibroblasts; this process may be driven or impeded by a response to local TGF-β1 or BMP-7. BMP-7 downregulated α-SMA and phosphorylated Smad2/3. Stimulation of cultured cells with TGF-β1 induced the expression of pSmad2/3, FSP-1, and α-SMA. Stimulation of cultured cells with BMP-7 induced the expression of E-cad. We demonstrated that the cells upregulated E-cad release compared with untreated cells, but TGF-β1 was different. We found that the equilibrium of the ratio of TGF-β1/BMP-7 was 1/10. In summary, the mechanism for this process was not determined. Demonstration of the contribution of what the ratio of TGF-β1/BMP-7 induced to EMT to the chronic liver diseases would provide a new basis for understanding pathogenesis and potential treatment.
Background: Schisandrin B (Sch B), the main ingredient of Schisandra chinensis, displays many bioactivities. This study aimed to identify the drug target of Sch B against liver fibrosis and describe the related molecular mechanisms. Methods:The effects of Sch B on liver fibrosis and macrophage polarization was investigated in vivo and in vitro. Furthermore, we analyzed the regulatory effect of Sch B on peroxisome proliferator-activated receptor gamma (PPARγ).Results: Our data showed that Sch B dramatically alleviated liver inflammation and fibrosis and inhibited macrophage activation via PPARγ. Sch B binds with PPARγ by molecular docking. Immunofluorescence double staining showed that PPARγ was mainly expressed in macrophages rather than hepatic stellate cells (HSCs) in liver fibrosis. Importantly, Sch B strongly inhibited macrophage polarization in fibrotic livers compared with the model group. Further, the results revealed that Sch B efficiently inhibited macrophage polarization and also decreased the levels of inflammatory cytokines in vitro. Knockdown of PPARγ by small interfering RNA (siRNA) inhibited the effect of Sch B on macrophage polarization. Mechanistically, Sch B regulated macrophage polarization through inhibition of the nuclear factor (NF)-κB signaling pathway via PPARγ both in vivo and in vitro.Conclusions: These results suggested that Sch B alleviated carbon tetrachloride (CCl 4 )-induced liver inflammation and fibrosis by inhibiting macrophage polarization via targeting PPARγ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.