We present a novel approach to multi-texture image segmentation based on the formation of an effective texture feature vector. Texture sub-features are derived from the output of an optimized Gabor filter. The filter's parameters are selected by an immune genetic algorithm, which aims at maximizing the discrimination between the multi-textured regions. Next the texture features are integrated with a local binary pattern, to form an effective texture descriptor with low computational cost, which overcomes the weakness of the single frequency output component of the filter. Finally, a K-nearest neighbor classifier is used to effect the multi-texture segmentation. The integration of the optimum Gabor filter and local binary pattern methods provide a novel solution to the task. Experimental results demonstrate the effectiveness of the proposed approach.
The rapid growth of Internet of Things (IoT) and Internet of Vehicles (IoV) are rapidly moving to the 6G networks, which leads to dramatically raised security issues. Using machine learning, including deep learning, to find out malicious network traffic is one of practical ways. Though much work has been done in this direction, we found little investigating the effect of using fused network conversation datasets to train and test models. Thus, this work proposes to check conversation dataset characteristics and find suitable ones to fuse into one dataset in order to improve the capability of malicious traffic and malware detection performance. The experiments using real data show that conditioned combination of datasets can be used to enhance algorithm performance and improve detection results. For this reason, it is recommended to profile datasets and conduct conditional fusion of network conversation datasets before using machine learning or deep learning. As the characterization is done using general statistical calculation, it is promising to be used for other domains too.
The boundary irregularity of skin lesions is of clinical significance for the early detection of malignant melanomas and to distinguish them from other lesions such as benign moles. The structural components of the contour are of particular importance. To extract the structure from the contour, wavelet decomposition was used as these components tend to locate in the lower frequency sub-bands. Lesion contours were modeled as signatures with scale normalization to give position and frequency resolution invariance. Energy distributions among different wavelet sub-bands were then analyzed to extract those with significant levels and differences to enable maximum discrimination.Based on the coefficients in the significant sub-bands, structural components from the original contours were modeled, and a set of statistical and geometric irregularity descriptors researched that were applied at each of the significant sub-bands. The effectiveness of the descriptors was measured using the Hausdorff distance between sets of data from melanoma and mole contours.The best descriptor outputs were input to a back projection neural network to construct a combined classifier system. Experimental results showed that thirteen features from four sub-bands produced the best discrimination between sets of melanomas and moles, and that a small training set of nine melanomas and nine moles was optimum.
At this moment, GAN-based image generation methods are still imperfect, whose upsampling design has limitations in leaving some certain artifact patterns in the synthesized image. Such artifact patterns can be easily exploited (by recent methods) for difference detection of real and GAN-synthesized images. However, the existing detection methods put much emphasis on the artifact patterns, which can become futile if such artifact patterns were reduced. Towards reducing the artifacts in the synthesized images, in this paper, we devise a simple yet powerful approach termed FakePolisher that performs shallow reconstruction of fake images through a learned linear dictionary, intending to effectively and efficiently reduce the artifacts introduced during image synthesis. In particular, we first train a dictionary model to capture the patterns of real images. Based on this dictionary, we seek the representation of DeepFake images in a low dimensional subspace through linear projection or sparse coding. Then, we are able to perform shallow reconstruction of the 'fake-free' version of the DeepFake image, which largely reduces the artifact patterns DeepFake introduces. The comprehensive evaluation on 3 state-of-the-art DeepFake detection methods and fake images generated by 16 popular GAN-based fake image generation techniques, demonstrates the effectiveness of our technique. Overall, through reducing artifact patterns, our technique significantly reduces the accuracy of the 3 state-of-theart fake image detection methods, i.e., 47% on average and up to 93% in the worst case. Our results confirm the limitation of current fake detection methods and calls the attention of DeepFake researchers and practitioners for more general-purpose fake detection techniques. CCS CONCEPTS • Security and privacy → Human and societal aspects of security and privacy; • Computing methodologies → Computer vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.