Borna disease virus (BDV) is a neurotropic virus that produces neuropsychiatric dysfunction in a wide range of warm-blooded species. Several studies have associated BDV with human psychiatric illness, but the findings remain controversial. Although oligodendrocytes are a major glial component of brain white matter and play a pivotal role in neuronal cell function, BDV's effects on human oligodendrocytes have not been clarified. Here, the effects of two BDV strains, Hu-H1 (isolated from a bipolar patient) and Strain V (a laboratory strain), on the proliferation and apoptosis of human oligodendrocytes were investigated. Three experimental cell lines were constructed: Hu-H1-infected oligodendroglioma (Hu-H1) cells, Strain V-infected oligodendroglioma (Strain V) cells, and non-infected oligodendroglioma (control) cells. BDV infection was assayed by BDV nucleoprotein (p40) immunofluorescence, cell proliferation was assayed by Cell Counting Kit-8 (CCK8), and cell cycle phases and apoptosis were assayed by flow cytometry. Expressions of the apoptosis-related proteins Bax and Bcl-2 were measured by Western blotting. p40 expression was confirmed in Hu-H1 and Strain V on and after day three post-infection. Strain V cells showed significantly greater cellular proliferation than Hu-H1 cells on and after day three post-infection. In Hu-H1 cells, Bax and Bcl-2 expression were significantly increased and decreased, respectively, on and after day three post-infection. In contrast, in Strain V cells, Bax and Bcl-2 expression were significantly decreased and increased, respectively, on and after day three post-infection. In conclusion, Hu-H1 inhibits cellular proliferation and promotes apoptosis in human oligodendrocytes via Bax upregulation and Bcl-2 downregulation. In contrast, Strain V promotes cellular proliferation and inhibits apoptosis in human oligodendrocytes via Bax downregulation and Bcl-2 upregulation. The effects of the Hu-H1 strain (isolated from a bipolar patient) are opposite from those of Strain V (a laboratory strain), thereby providing a proof of authenticity for both.
BackgroundBorna disease virus is a neurotropic, non-cytolytic virus that has been widely employed in neuroscientific research. Previous studies have revealed that metabolic perturbations are associated with Borna disease viral infection. However, the pathophysiological mechanism underlying its mode of action remains unclear.MethodologyHuman oligodendroglia cells infected with the human strain Borna disease virus Hu-H1 and non-infected matched control cells were cultured in vitro. At day 14 post-infection, a proton nuclear magnetic resonance-based metabonomic approach was used to differentiate the metabonomic profiles of 28 independent intracellular samples from Borna disease virus-infected cells (n = 14) and matched control cells (n = 14). Partial least squares discriminant analysis was performed to demonstrate that the whole metabonomic patterns enabled discrimination between the two groups, and further statistical testing was applied to determine which individual metabolites displayed significant differences between the two groups.FindingsMetabonomic profiling revealed perturbations in 23 metabolites, 19 of which were deemed individually significant: nine energy metabolites (α-glucose, acetate, choline, creatine, formate, myo-inositol, nicotinamide adenine dinucleotide, pyruvate, succinate) and ten amino acids (aspartate, glutamate, glutamine, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine, valine). Partial least squares discriminant analysis demonstrated that the whole metabolic patterns enabled statistical discrimination between the two groups.ConclusionBorna disease viral infection perturbs the metabonomic profiles of several metabolites in human oligodendroglia cells cultured in vitro. The findings suggest that Borna disease virus manipulates the host cell’s metabolic network to support viral replication and proliferation.
BackgroundMurine norovirus (MNV) is recognized as the most prevalent viral pathogen in captive mouse colonies. The rapid detection assay for MNV would be a useful tool for monitoring and preventing MNV infection. A recombinase polymerase amplification (RPA) assay was established in this study to provide a solution for rapid and sensitive detection of MNV.ResultsThe detection limit of the RT-RPA assay for the detection of MNV was 1 × 102 copies of RNA molecules per reaction. The assay was specific since there was no cross-reaction with other common murine viruses. In addition, the broad reactivity of the RT-RPA assay was validated using the synthesized template carrying seven point mutations among several MNV strains. The MNV RT-RPA assay could detect as few as 1 × 102 copies of the mutant per reaction, suggesting the assay could be broadly reactive against a large diversity of MNV strains. Forty eight clinical samples including 16 gastric tissue specimens, 16 cecal tissue specimens and 16 fecal specimens were tested for the validation of the new developed RT-RPA assay. The detection results of RT-RPA and RT-qPCR for clinical samples were very similar, except that a gastric tissue sample which was positive by RT-qPCR, with a RNA titer of 27 copies, was negative by RT-RPA.ConclusionsA broadly reactive RT-RPA assay was successfully established for MNV detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.