This paper proposes a statistical method for finding Significantly Expressed (SE) genes from time-course expression. SE genes are time-dependent while non-SE genes are time-independent. This method models time-dependent gene expression profiles by autoregressive equations plus Gaussian noises, and time-independent ones by Gaussian noises. The statistical F-testing is used to calculate the probability (p-value) that a profile is time-independent. Both a synthetic dataset and a biological dataset were employed to evaluate the performance of this method, measured by the False Discovery Rate (FDR) and the False Non-discovery Rate (FNR). Results show that the proposed method outperforms traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.