The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.