Microelectronic devices with reconfigurable three-dimensional (3D) microarchitecture that can be repetitively switched among different geometrical and/or working states have promising applications in widespread areas. Traditional approaches usually rely on stimulated deformations of active materials under external electric/magnetic fields, which could potentially introduce parasitic side effects and lower device performances. Development of a rational strategy that allows access to high-performance 3D microdevices with multiple stable geometric configurations remains challenging. We introduce a mechanically guided scheme to build geometrically reconfigurable 3D mesostructures through a bottom-up design strategy based on a class of elementary reconfigurable structures with the simplest ribbon geometries. Quantitative mechanics modeling of the structural reconfigurability allows for the development of phase diagrams and design maps. Demonstrations of ~30 reconfigurable mesostructures with diverse geometric topologies and characteristic dimensions illustrate the versatile applicability. The multimode nature enables customized distinct beamforming and discrete beam scanning using a single antenna capable of on-demand reconfiguration.
Monolithic strong magnetic induction at the mtesla to tesla level provides essential functionalities to physical, chemical, and medical systems. Current design options are constrained by existing capabilities in three-dimensional (3D) structure construction, current handling, and magnetic material integration. We report here geometric transformation of large-area and relatively thick (~100 to 250 nm) 2D nanomembranes into multiturn 3D air-core microtubes by a vapor-phase self-rolled-up membrane (S-RuM) nanotechnology, combined with postrolling integration of ferrofluid magnetic materials by capillary force. Hundreds of S-RuM power inductors on sapphire are designed and tested, with maximum operating frequency exceeding 500 MHz. An inductance of 1.24 μH at 10 kHz has been achieved for a single microtube inductor, with corresponding areal and volumetric inductance densities of 3 μH/mm2 and 23 μH/mm3, respectively. The simulated intensity of the magnetic induction reaches tens of mtesla in fabricated devices at 10 MHz.
The manufacture of 3D mesostructures is receiving rapidly increasing attention, because of the fundamental significance and practical applications across wide-ranging areas. The recently developed approach of buckling-guided assembly allows deterministic formation of complex 3D mesostructures in a broad set of functional materials, with feature sizes spanning nanoscale to centimeter-scale. Previous studies mostly exploited mechanically controlled assembly platforms using elastomer substrates, which limits the capabilities to achieve on-demand local assembly, and to reshape assembled mesostructures into distinct 3D configurations. This work introduces a set of design concepts and assembly strategies to utilize dielectric elastomer actuators as powerful platforms for the electro-mechanically controlled 3D assembly. Capabilities of sequential, local loading with desired strain distributions allow access to precisely tailored 3D mesostructures that can be reshaped into distinct geometries, as demonstrated by experimental and theoretical studies of ∼30 examples. A reconfigurable inductive–capacitive radio-frequency circuit consisting of morphable 3D capacitors serves as an application example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.