Strategically designed, well-defined 3D architectures could offer great opportunities, that are unavailable in their 2D counterparts, for a broad spectrum of applications, such as microelectronics, bioelectronics, photonics and optoelectronics, micro-electromechanical systems, metamaterials, energy storage and harvesting, soft robotics, and many others. Existing manufacturing techniques of 3D structures mainly include 3D printing, templated growth, fluidic self-assembly, and mechanically guided 3D assembly. Among these methods, the mechanically guided 3D assembly has recently attracted broad attention in the scientific community. The process starts from the planar fabrication of patterned 2D precursor structures, followed by the 2D-to-3D shape transformation via controlled rolling, folding, curving, and/ or buckling. [4] This process is naturally compatible with existing advanced planar fabrication technologies (e.g., lithographic and laser-processing techniques). Consequently, micro/nanoscale structures, sensors and/or other functional components Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on-demand reversible shape reconfigurations, desirable for many emerging applications (e.g., responsive metamaterials, soft robotics). Here, the design, fabrication, and modeling of soft electrothermal actuators based on laser-induced graphene (LIG) are reported and their applications in mechanically guided 3D assembly and human-soft actuators interaction are explored. Over 20 complex 3D architectures are fabricated, including reconfigurable structures that can reshape among three distinct geometries. Also, the structures capable of maintaining 3D shapes at room temperature without the need for any actuation are realized by fabricating LIG actuators at an elevated temperature. Finite element analysis can quantitatively capture key aspects that govern electrothermally controlled shape transformations, thereby providing a reliable tool for rapid design optimization. Furthermore, their applications are explored in human-soft actuators interaction, including elastic metamaterials with human gesture-controlled bandgap behaviors and soft robotic fingers which can measure electrocardiogram from humans in an on-demand fashion. Other demonstrations include artificial muscles, which can lift masses that are about 110 times of their weights and biomimetic frog tongues which can prey insects.
Elastic stretchability and function density represent two key figures of merits for stretchable inorganic electronics. Various design strategies have been reported to provide both high levels of stretchability and function density, but the function densities are mostly below 80%. While the stacked device layout can overcome this limitation, the soft elastomers used in previous studies could highly restrict the deformation of stretchable interconnects. Here, we introduce stacked multilayer network materials as a general platform to incorporate individual components and stretchable interconnects, without posing any essential constraint to their deformations. Quantitative analyses show a substantial enhancement (e.g., by ~7.5 times) of elastic stretchability of serpentine interconnects as compared to that based on stacked soft elastomers. The proposed strategy allows demonstration of a miniaturized electronic system (11 mm by 10 mm), with a moderate elastic stretchability (~20%) and an unprecedented areal coverage (~110%), which can serve as compass display, somatosensory mouse, and physiological-signal monitor.
The climbing microrobots have attracted growing attention due to their promising applications in exploration and monitoring of complex, unstructured environments. Soft climbing microrobots based on muscle-like actuators could offer excellent flexibility, adaptability, and mechanical robustness. Despite the remarkable progress in this area, the development of soft microrobots capable of climbing on flat/curved surfaces and transitioning between two different surfaces remains elusive, especially in open spaces. In this study, we address these challenges by developing voltage-driven soft small-scale actuators with customized 3D configurations and active stiffness adjusting. Combination of programmed strain distributions in liquid crystal elastomers (LCEs) and buckling-driven 3D assembly, guided by mechanics modeling, allows for voltage-driven, complex 3D-to-3D shape morphing (bending angle > 200°) at millimeter scales (from 1 to 10 mm), which is unachievable previously. These soft actuators enable development of morphable electroadhesive footpads that can conform to different curved surfaces and stiffness-variable smart joints that allow different locomotion gaits in a single microrobot. By integrating such morphable footpads and smart joints with a deformable body, we report a multigait, soft microrobot (length from 6 to 90 mm, and mass from 0.2 to 3 g) capable of climbing on surfaces with diverse shapes (e.g., flat plane, cylinder, wavy surface, wedge-shaped groove, and sphere) and transitioning between two distinct surfaces. We demonstrate that the microrobot could navigate from one surface to another, recording two corresponding ceilings when carrying an integrated microcamera. The developed soft microrobot can also flip over a barrier, survive extreme compression, and climb bamboo and leaf.
Electronic devices with engineered three-dimensional (3D) architectures are indispensable for frictional-force sensing, wide-field optical imaging, and flow velocity measurement. Recent advances in mechanically guided assembly established deterministic routes to 3D structures in high-performance materials, through controlled rolling/folding/buckling deformations. The resulting 3D structures are, however, mostly formed on planar substrates and cannot be transferred directly onto another curved substrate. Here, we introduce an ordered assembly strategy to allow transformation of 2D thin films into sophisticated 3D structures on diverse curved surfaces. The strategy leverages predefined mechanical loadings that deform curved elastomer substrates into flat/cylindrical configurations, followed by an additional uniaxial/biaxial prestretch to drive buckling-guided assembly. Release of predefined loadings results in an ordered assembly that can be accurately captured by mechanics modeling, as illustrated by dozens of complex 3D structures assembled on curved substrates. Demonstrated applications include tunable dipole antennas, flow sensors inside a tube, and integrated electronic systems capable of conformal integration with the heart.
The manufacture of 3D mesostructures is receiving rapidly increasing attention, because of the fundamental significance and practical applications across wide-ranging areas. The recently developed approach of buckling-guided assembly allows deterministic formation of complex 3D mesostructures in a broad set of functional materials, with feature sizes spanning nanoscale to centimeter-scale. Previous studies mostly exploited mechanically controlled assembly platforms using elastomer substrates, which limits the capabilities to achieve on-demand local assembly, and to reshape assembled mesostructures into distinct 3D configurations. This work introduces a set of design concepts and assembly strategies to utilize dielectric elastomer actuators as powerful platforms for the electro-mechanically controlled 3D assembly. Capabilities of sequential, local loading with desired strain distributions allow access to precisely tailored 3D mesostructures that can be reshaped into distinct geometries, as demonstrated by experimental and theoretical studies of ∼30 examples. A reconfigurable inductive–capacitive radio-frequency circuit consisting of morphable 3D capacitors serves as an application example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.