This paper describes a new algorithm for estimating the position and orientation of objects. The problem is formulated as an optimization problem using dual number quaternious. The advantage of using this representation is that the method solves for the location estimate by minimizing a single cost function associated with the sum of the orientation and position errors and thus is expected to have a better performance on the estimation, both in accuracy and in speed. Several forms of sensory information can be used by the algorithm. That is, the measured data can be a combination of measured points on an object's surfaces and measured unit direction vectors located on the object. Simulations have been carried out on a Compaq 386/20 computer and the SiIIIUkItiOU reSUltS are analyzed.
Background Molecular descriptors and fingerprints have been routinely used in QSAR/SAR analysis, virtual drug screening, compound search/ranking, drug ADME/T prediction and other drug discovery processes. Since the calculation of such quantitative representations of molecules may require substantial computational skills and efforts, several tools have been previously developed to make an attempt to ease the process. However, there are still several hurdles for users to overcome to fully harness the power of these tools. First, most of the tools are distributed as standalone software or packages that require necessary configuration or programming efforts of users. Second, many of the tools can only calculate a subset of molecular descriptors, and the results from multiple tools need to be manually merged to generate a comprehensive set of descriptors. Third, some packages only provide application programming interfaces and are implemented in different computer languages, which pose additional challenges to the integration of these tools.Results A freely available web-based platform, named ChemDes, is developed in this study. It integrates multiple state-of-the-art packages (i.e., Pybel, CDK, RDKit, BlueDesc, Chemopy, PaDEL and jCompoundMapper) for computing molecular descriptors and fingerprints. ChemDes not only provides friendly web interfaces to relieve users from burdensome programming work, but also offers three useful and convenient auxiliary tools for format converting, MOPAC optimization and fingerprint similarity calculation. Currently, ChemDes has the capability of computing 3679 molecular descriptors and 59 types of molecular fingerprints.ConclusionChemDes provides users an integrated and friendly tool to calculate various molecular descriptors and fingerprints. It is freely available at http://www.scbdd.com/chemdes. The source code of the project is also available as a supplementary file.Graphical abstract:An overview of ChemDes. A platform for computing various molecular descriptors and fingerprints
A shear-improved Smagorinsky model is introduced based on recent results concerning shear effects in wall-bounded turbulence by Toschi et al. (2000). The Smagorinsky eddyviscosity is modified as ν T = (C s ∆) 2 (|S|−| S |): the magnitude of the mean shear | S | is subtracted to the magnitude of the instantaneous resolved strain-rate tensor |S|; here C S is the standard Smagorinsky constant and ∆ denotes the grid spacing. This subgrid-scale model is tested in large-eddy simulations of plane-channel flows at Reynolds numbers Re τ = 395 and Re τ = 590. First comparisons with the dynamic Smagorinsky model and direct numerical simulations, including mean velocity, turbulent kinetic energy and Reynolds stress profiles, are shown to be extremely satisfactory. The proposed model, in addition of being physically sound, has a low computational cost and possesses a high potentiality of generalization to more complex non-homogeneous turbulent flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.