SUMMARY Mitochondrial dysfunction causes poorly understood tissue-specific pathology stemming from primary defects in respiration, coupled with altered reactive oxygen species (ROS), metabolic signaling and apoptosis. The A1555G mtDNA mutation that causes maternally inherited deafness disrupts mitochondrial ribosome function, in part, via increased methylation of the mitochondrial 12S rRNA by the methyltransferase mtTFB1. In patient-derived A1555G cells, we show that 12S rRNA hyper-methylation causes ROS-dependent activation of AMP kinase and the pro-apoptotic nuclear transcription factor E2F1. This retrograde mitochondrial-stress relay is operative in vivo as transgenic-mtTFB1 mice exhibit enhanced 12S rRNA methylation in multiple tissues, increased E2F1 and apoptosis in the stria vascularis and spiral ganglion neurons of the inner ear, and progressive E2F1-dependent hearing loss. This transgenic-mtTFB1 mouse mitochondrial disease model provides a robust platform for deciphering the complex tissue-specificity of human mitochondrial-based disorders, as well as the precise pathogenic mechanism of maternally inherited deafness and its exacerbation by environmental factors.
Chloride ions have been hypothesized to interact with the membrane outer hair cell (OHC) motor protein, prestin on its intracellular domain to confer voltage sensitivity (Oliver et al., 2001). Thus, we hypothesized previously that transmembrane chloride movements via the lateral membrane conductance of the cell, G metL , could serve to underlie cochlear amplification in the mammal. Here, we report on experimental manipulations of chloride-dependent OHC motor activity in vitro and in vivo. In vitro, we focused on the signature electrical characteristic of the motor, the nonlinear capacitance of the cell. Using the well known ototoxicant, salicylate, which competes with the putative anion binding or interaction site of prestin to assess level-dependent interactions of chloride with prestin, we determined that the resting level of chloride in OHCs is near or below 10 mM, whereas perilymphatic levels are known to be ϳ140 mM. With this observation, we sought to determine the effects of perilymphatic chloride level manipulations of basilar membrane amplification in the living guinea pig. By either direct basolateral perfusion of the OHC with altered chloride content perilymphatic solutions or by the use of tributyltin, a chloride ionophore, we found alterations in OHC electromechanical activity and cochlear amplification, which are fully reversible. Because these anionic manipulations do not impact on the cation selective stereociliary process or the endolymphatic potential, our data lend additional support to the argument that prestin activity dominates the process of mammalian cochlear amplification.
The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (G(metL)) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and use the environmental toxin tributyltin (TBT) to better understand Cl-prestin interactions. Capitalizing on measures of prestin-derived nonlinear capacitance to gauge Cl flux across the lateral membrane, we show that the Cl ionophore TBT, which affects neither the motor nor G(metL) directly, is capable of augmenting the native flux of Cl in OHCs. These observations were confirmed using the chloride-sensitive dye MQAE. Furthermore, the compound's potent ability, at nanomolar concentrations, to equilibrate intra- and extracellular Cl concentrations is shown to surpass the effectiveness of G(metL) in promoting Cl flux, and secure a quantitative analysis of Cl-prestin interactions in intact OHCs. Using malate as an anion replacement, we quantify chloride effects on the nonlinear charge density and operating voltage range of prestin. Our data additionally suggest that ototoxic effects of organotins can derive from their disruption of OHC Cl homeostasis, ultimately interfering with anionic modulation of the mammalian cochlear amplifier. Notably, this observation identifies a new environmental threat for marine mammals by TBT, which is known to accumulate in the food chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.