Automated left-ventricle (LV) boundary delineation from contrast ventriculograms has been studied for decades. Unfortunately, no accurate methods have ever been reported. A new knowledge based multistage method to automatically delineate the LV boundary at end diastole (ED) and end systole (ES) is discussed in this paper. It has a mean absolute boundary error or about 2 mm and an associated ejection fraction error of about 6%. The method makes extensive use of knowledge about LV shape and movement. The processing includes a multiimage pixel region classification, shape regression, and rejection classification. The method was trained and cross-validated tested on a database of 375 studies whose ED and ES boundary had been manually traced as the ground truth. The cross-validated results presented in this paper show that the accuracy is close to and slightly above the interobserver variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.