Layer-by-layer adsorption of polyelectrolytes and gold nanoparticles within porous supports provides a convenient method for forming catalytic membranes. The polyelectrolyte film effectively immobilizes the gold nanoparticles without inhibiting access to catalytic sites, as shown by the similar rate constants for nanoparticle-catalyzed 4-nitrophenol reduction in solution and in membranes. Modified alumina membranes reduce >99% of 0.4 mM 4-nitrophenol at linear flow rates of 0.98 cm/s, and the modification process is also applicable to track-etched polycarbonate supports.
Polymeric coatings with high protein-binding capacities are important for increasing the output of affinity-based protein purification and decreasing the detection limits of antibody microarrays. This report describes the use of thick poly(acrylic acid) (PAA) brushes to immobilize as much as 80 monolayers of protein. The brushes were prepared using a recently developed procedure that allows polymerization of 100-nm-thick poly(tert-butyl acrylate) films from a surface in just 5 min along with hydrolysis of these films to PAA in 15 min. Covalent binding of bovine serum albumin (BSA) to PAA brushes that were activated using standard coupling agents, however, resulted in immobilization of less than two monolayers of BSA because of competitive hydrolysis of the esters in the activated film. In contrast, derivatization of PAA with nitrilotriacetate (NTA)-Cu2+ complexes yielded films capable of binding many monolayers of protein via metal-ion affinity interactions. For example, derivatization of 55-nm-thick PAA films with NTA-Cu2+ allowed immobilization of about 15 monolayers (5.8 microg/cm2 or 58 nm) of BSA. The binding capacity was even higher for myoglobin (7.7 microg/cm2) and anti-IgG (9.6 microg/cm2). Remarkably, electrostatic adsorption of lysozyme in 55-nm-thick, underivatized PAA resulted in as much as 80 monolayers (16.2 microg/cm2 or 162 nm) of adsorbed protein. Polymer synthesis, derivatization, and swelling, as well as BSA immobilization kinetics and thermodynamics were characterized using reflectance FT-IR spectroscopy, ellipsometry, and protein assays.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the major cause of dementia, and the increasing worldwide prevalence of AD is a major public health concern. Increasing epidemiological studies suggest that diet and nutrition might be important modifiable risk factors for AD. Dietary supplementation of antioxidants, B vitamins, polyphenols, and polyunsaturated fatty acids are beneficial to AD, and consumptions of fish, fruits, vegetables, coffee, and light-to-moderate alcohol reduce the risk of AD. However, many of the results from randomized controlled trials are contradictory to that of epidemiological studies. Dietary patterns summarizing an overall diet are gaining momentum in recent years. Adherence to a healthy diet, the Japanese diet, and the Mediterranean diet is associated with a lower risk of AD. This paper will focus on the evidence linking many nutrients, foods, and dietary patterns to AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.