Background
Chinese giant salamander
Andrias davidianus
is an endangered species. The success of artificial breeding provides a useful way to protect this species. However, the method to identify the sex and mechanism of sex determination were unclear which hinder the improvement of the artificial breeding. Detection of a sex specific marker provides an effective approach to identify genetic sex and investigate the sex determination mechanism.
Results
We used restriction-site-associated DNA (RAD) sequencing to isolate a sex-specific genetic marker in
A. davidianus
to expand knowledge of the sex determination mechanism. Four male and four female specimens were subjected to RAD sequencing, which generated 934,072,989 reads containing approximately 134.4 Gb of sequences. The first round of comparison of the assembled sequence against the opposite sex raw reads revealed 19,097 female and 17,994 male unmatched sequences. Subsequently, 19,097 female sequences were subjected to a BLAST search against male genomic data, which revealed 308 sequences unmapped to the male genome. One hundred of these were randomly selected and validated by PCR in five male and five female specimens, and four putative sex-specific sequences were produced. Further validation was performed by PCR in another 24 females and 24 males, and all female individuals exhibited the expected specific bands, while the males did not. To apply the sex-specific marker, three specimens reversed from genetic female to physiological male were found in a group exposed to elevated temperature, and 13 individuals reversed from genetic male to physiological female were obtained in a 17β-estradiol exposed group.
Conclusion
This is the first report of a sex-specific marker in
A. davidianus
and may have potential for elucidation of its sex determination mechanism and, hence, its conservation
.
Electronic supplementary material
The online version of this article (10.1186/s12864-019-5771-5) contains supplementary material, which is available to authorized users.
After partial hepatectomy (PH), the recovery of liver mass is mainly mediated by proliferation and enlargement of hepatocytes. Therefore, measuring the transcriptional profiling of hepatocytes after PH will be helpful in exploring the mechanism of liver regeneration (LR). Firstly, hepatocytes were isolated from rat regenerating liver at different time points following PH, and then global gene expression analysis of hepatocytes was performed using Rat Genome 230 2.0 Array. The results demonstrated that 1,417 genes in the array (including 767 known genes) were identified to be LR-related. Clustering analysis demonstrated that 767 known genes fell into six classes with distinct expression kinetics. When gene expression patterns were combined with gene functions, genes involved in acute-phase response and defense response were rapidly elevated in early phases; those in cell proliferation and DNA replication were significantly up-expressed in middle phase; a growing number of cell adhesion-involved genes were up-regulated as regeneration progressed; those in amino acid and lipid metabolism showed persistent down-regulation during LR. Based on the above analyses, it was suggested that hepatocyte defense mechanism was quickly triggered after PH; cell proliferation became active in middle phase; cell adhesion was strengthened in late phase; amino acid and lipid metabolism were attenuated during LR. Additionally, comparative analysis between transcriptional profiling of hepatocytes and regenerating liver indicated a major contribution of hepatocytes to LR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.