Because a large number of labeled face data samples in special scenes need a large number of training samples with identity markers, and it is impossible to accurately extract the characteristics of small samples, a fast face recognition method based on double decision subspace is proposed. A feature recognition structure based on double decision subspace is constructed to preprocess the face image and separate the local features of several corresponding face images. The local binary pattern is used to extract the local texture features of the face, and the deep convolution network face fast recognition model is constructed. The convolution network is used to share the weight, pool, and downsampling to reduce the complexity of the model. The constructed recognition model is used to recognize the features of the face image, and the fast face recognition is effectively completed. The experimental results show that the designed method has high recognition accuracy, less average recognition time, and good recognition performance.
To improve the three-dimensional (3D) reconstruction effect of intelligent manufacturing image and reduce the reconstruction time, a new CAD-aided 3D reconstruction of intelligent manufacturing image based on time series was proposed. Kinect sensor is used to collect depth image data and convert it into 3D point cloud coordinates. The collected point cloud data are divided into regions, and different point cloud denoising algorithms are used to filter and denoise the divided regions. With the help of CAD, FLANN matching algorithm is used to extract feature points of time-series images and complete image matching. Three-dimensional reconstruction of sparse point cloud and dense point cloud is carried out to complete 3D reconstruction of intelligent manufacturing images. The experimental results show that the image PSNR of this method is always above 52 dB, and the maximum reconstruction time is 4.9 s. The 3D reconstruction effect of intelligent manufacturing image is better, and it has higher practical application value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.