Low-frequency sound field reconstruction in an enclosed space has many applications where the plane wave approximation of acoustic modes plays a crucial role. However, the basis mismatch of the plane wave directions degrades the approximation accuracy. In this study, a two-stage method combining ℓ1-norm relaxation and parametric sparse Bayesian learning is proposed to address this problem. This method involves selecting sparse dominant plane wave directions from pre-discretized directions and constructing a parameterized dictionary of low dimensionality. This dictionary is used to re-estimate the plane wave complex amplitudes and directions based on the sparse Bayesian framework using the variational Bayesian expectation and maximization method. Numerical simulations show that the proposed method can efficiently optimize the plane wave directions to reduce the basis mismatch and improve acoustic mode approximation accuracy. The proposed method involves slightly increased computational cost but obtains a higher reconstruction accuracy at extrapolated field points and is more robust under low signal-to-noise ratios compared with conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.