The effect of type 1 diabetes on bone healing and bone formation in standardized craniotomy defects created in BALB/cByJ mice was determined. The hypothesis that advanced glycation end products (AGEs) contribute to diminished bone healing in diabetes was evaluated by assessing for the presence of the receptor for advanced glycation end products (RAGE) by immunohistochemistry in healing craniotomy defects in diabetic animals. The effect of local application of a known RAGE protein ligand, N ⑀ -(carboxymethyl)lysine (CML)؊mouse serum albumin (MSA), on craniotomy defect healing in normal animals was then assessed and compared to the effects of control MSA. Finally, evidence in support of the expression of RAGE mRNA and protein in osteoblastic cells was obtained. The results indicated that craniotomy defects in diabetic animals healed ϳ40% of the degree to which they healed in nondiabetic animals (P < 0.05). RAGE was expressed at higher levels in healing bone tissues in diabetic compared to control animals. Further studies in nondiabetic animals indicated that bone healing was reduced by 63 and 42% in lesions treated with 900 and 90 g CML-MSA, respectively, compared to in animals treated with MSA alone (P < 0.05). Evidence for the expression of RAGE was obtained in mouse and rat osteoblastic cultures. These results support the contribution of AGEs to diminished bone healing in type 1 diabetes, possibly mediated by RAGE. Diabetes
Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier “liquid biopsy” than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33) of cytokeratin (CK) positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively). The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02). Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04) in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively). We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker expression, indicating epithelial-to-mesenchymal transition. CK-positive/Vimentin-positive/CD45-negative, and CK-negative/Vimentin-positive/CD45-negative cells were also observed in four of five prostate cancer patients but rarely in three healthy controls, indicating that Parsortix harvests CTCs with both epithelial and mesenchymal features. We also demonstrated using PC3 and DU145 spiking experiment that Parsortix harvested cells were viable for cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.