SUMMARY
We have developed genetically encoded fluorescent sensors for reduced nicotinamide adenine dinucleotide (NADH), which manifest a large change in fluorescence upon NADH binding. We demonstrate the utility of these sensors in mammalian cells by monitoring the dynamic changes in NADH levels in subcellular organelles as affected by NADH transport, glucose metabolism, electron transport chain function, and redox environment, and we demonstrate the temporal separation of changes in mitochondrial and cytosolic NADH levels with perturbation. These results support the view that cytosolic NADH is sensitive to environmental changes, while mitochondria have a strong tendency to maintain physiological NADH homeostasis. These sensors provide a very good alternative to existing techniques that measure endogenous fluorescence of intracellular NAD(P)H and, owing to their superior sensitivity and specificity, allow for the selective monitoring of total cellular and compartmental responses of this essential cofactor.
A new chemosensor based on rhodamine B thiohydrazide is described. Chemosensor B was found to show a reversible dual chromo- and fluorogenic response toward Hg2+ in aqueous solution in a highly selective and sensitive manner. This was suggested to result from the coordination of Hg2+ at the N, S binding sites in B to open its spiro ring.
An alternative version of fluorescence correlation spectroscopy is presented, where the signal from a medium surrounding the particles of interest is analyzed, as opposed to a signal from the particles themselves. This allows for analysis of unlabeled particles and potentially of biomolecules. Here, the concept together with principal experiments on polystyrene beads of 100, 200, 400, and 800 nm diameter in an aqueous solution of alexa 488-fluorophores are presented. The use of photo detectors allowing higher photon fluxes, or of reduced detection volumes, should enable analysis of significantly smaller particles or even biomolecules.
Amphiphilic PNIPAM-b-PTPPC6MA block copolymers as promising photosensitizers for photodynamic therapy (PDT) constructed using porphyrin-containing monomers via RAFT polymerization.
Room temperature phosphorescence emission was achieved by host–guest recognition between γ-cyclodextrin and a 4-bromo-1,8-naphthalic anhydride polymer, which can be controlled by the photo-isomerization of the azobenzene unit of the other polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.