Scientific interest in geophysical information about land surface temperature (LST) is ever increasing, as such information provides a base for a large number of applications, including environmental and agricultural monitoring. Therefore, the research of LST retrieval has become a hot topic. Recent availability of Landsat-8 satellite imagery provides a new data source for LST retrieval. Hence, exploring an adaptive method with reliable accuracy seems to be essential. In this study, basing on features of Landsat-8 TIRS thermal infrared channels, we recalculated parameters in the atmospheric transmittance empirical models of the existing split-window algorithm, and estimated the ground emissivity with the help of the land cover classification map of the study area. Furthermore, a split-window algorithm was rebuilt by virtual of the estimation model of the updated atmospheric transmittance and the ground emissivity, and then a remote sensing retrieval for the LST of Shihezi city in Xinjiang Uygur autonomous region of Northwest China was conducted on the basis of this modified algorithm. Finally, precision validation of the new model was implemented by using the MODIS LST products. The results showed that the LST retrieval from Landsat-8 TIRS data based on our algorithm has a higher credibility, and the retrieved LST is more consistent with the MODIS LST products. This indicated that the modified algorithm is suitable for retrieving LST with competitive accuracy. With higher resolutions, Landsat-8 TIRS data may provide more accurate observation for LST retrieval.
-Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.