Somatic cell nuclear transfer (SCNT) enables cloning of differentiated cells by reprogramming their nuclei to a totipotent state. However, successful full-term development of SCNT embryos is a low-efficiency process and arrested embryos frequently exhibit epigenetic abnormalities. Here, we generated genome-wide DNA methylation maps from mouse pre-implantation SCNT embryos. We identified widespread regions that were aberrantly re-methylated, leading to mis-expression of genes and retrotransposons important for zygotic genome activation. Inhibition of DNA methyltransferases (Dnmts) specifically rescued these re-methylation defects and improved the developmental capacity of cloned embryos. Moreover, combining inhibition of Dnmts with overexpression of histone demethylases led to stronger reductions in inappropriate DNA methylation and synergistic enhancement of full-term SCNT embryo development. These findings show that excessive DNA re-methylation is a potent barrier that limits full-term development of SCNT embryos and that removing multiple epigenetic barriers is a promising approach to achieve higher cloning efficiency.
Despite the success of animal cloning by somatic cell nuclear transfer (SCNT) in many species, the method is limited by its low efficiency. After zygotic genome activation (ZGA) during mouse development, a large number of endogenous retroviruses (ERVs) are expressed, including the murine endogenous retrovirus‐L (MuERVL/MERVL). In this study, we generate a series of MERVL reporter mouse strains to detect the ZGA event in embryos. We show that the majority of SCNT embryos do not undergo ZGA, and H3K27me3 prevents SCNT reprogramming. Overexpression of the H3K27me3‐specific demethylase KDM6A, but not of KDM6B, improves the efficiency of SCNT. Conversely, knockdown of KDM6B not only facilitates ZGA, but also impedes ectopic Xist expression in SCNT reprogramming. Furthermore, knockdown of KDM6B increases the rate of SCNT‐derived embryonic stem cells from Duchenne muscular dystrophy embryos. These results not only provide insight into the mechanisms underlying failures of SCNT, but also may extend the applications of SCNT.
ImportanceEpisodic memory and executive function are essential aspects of cognitive functioning that decline with aging. This decline may be ameliorable with lifestyle interventions.ObjectiveTo determine whether mindfulness-based stress reduction (MBSR), exercise, or a combination of both improve cognitive function in older adults.Design, Setting, and ParticipantsThis 2 × 2 factorial randomized clinical trial was conducted at 2 US sites (Washington University in St Louis and University of California, San Diego). A total of 585 older adults (aged 65-84 y) with subjective cognitive concerns, but not dementia, were randomized (enrollment from November 19, 2015, to January 23, 2019; final follow-up on March 16, 2020).InterventionsParticipants were randomized to undergo the following interventions: MBSR with a target of 60 minutes daily of meditation (n = 150); exercise with aerobic, strength, and functional components with a target of at least 300 minutes weekly (n = 138); combined MBSR and exercise (n = 144); or a health education control group (n = 153). Interventions lasted 18 months and consisted of group-based classes and home practice.Main Outcomes and MeasuresThe 2 primary outcomes were composites of episodic memory and executive function (standardized to a mean [SD] of 0 [1]; higher composite scores indicate better cognitive performance) from neuropsychological testing; the primary end point was 6 months and the secondary end point was 18 months. There were 5 reported secondary outcomes: hippocampal volume and dorsolateral prefrontal cortex thickness and surface area from structural magnetic resonance imaging and functional cognitive capacity and self-reported cognitive concerns.ResultsAmong 585 randomized participants (mean age, 71.5 years; 424 [72.5%] women), 568 (97.1%) completed 6 months in the trial and 475 (81.2%) completed 18 months. At 6 months, there was no significant effect of mindfulness training or exercise on episodic memory (MBSR vs no MBSR: 0.44 vs 0.48; mean difference, –0.04 points [95% CI, –0.15 to 0.07]; P = .50; exercise vs no exercise: 0.49 vs 0.42; difference, 0.07 [95% CI, –0.04 to 0.17]; P = .23) or executive function (MBSR vs no MBSR: 0.39 vs 0.31; mean difference, 0.08 points [95% CI, –0.02 to 0.19]; P = .12; exercise vs no exercise: 0.39 vs 0.32; difference, 0.07 [95% CI, –0.03 to 0.18]; P = .17) and there were no intervention effects at the secondary end point of 18 months. There was no significant interaction between mindfulness training and exercise (P = .93 for memory and P = .29 for executive function) at 6 months. Of the 5 prespecified secondary outcomes, none showed a significant improvement with either intervention compared with those not receiving the intervention.Conclusions and RelevanceAmong older adults with subjective cognitive concerns, mindfulness training, exercise, or both did not result in significant differences in improvement in episodic memory or executive function at 6 months. The findings do not support the use of these interventions for improving cognition in older adults with subjective cognitive concerns.Trial RegistrationClinicalTrials.gov Identifier: NCT02665481
The primary goal of this pilot study was to assess feasibility of studies among local community members to address the hypothesis that complex exposures to the World Trade Center (WTC) dust and fumes resulted in long-term epigenetic changes. We enrolled 18 WTC-exposed cancer-free women from the WTC Environmental Health Center (WTC EHC) who agreed to donate blood samples during their standard clinical visits. As a reference WTC unexposed group, we randomly selected 24 age-matched cancer-free women from an existing prospective cohort who donated blood samples before 11 September 2001. The global DNA methylation analyses were performed using Illumina Infinium MethylationEpic arrays. Statistical analyses were performed using R Bioconductor package. Functional genomic analyses were done by mapping the top 5000 differentially expressed CpG sites to the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database. Among cancer-free subjects, we observed substantial methylation differences between WTC-exposed and unexposed women. The top 15 differentially methylated gene probes included BCAS2, OSGIN1, BMI1, EEF1A2, SPTBN5, CHD8, CDCA7L, AIDA, DDN, SNORD45C, ZFAND6, ARHGEF7, UBXN8, USF1, and USP12. Several cancer-related pathways were enriched in the WTC-exposed subjects, including endocytosis, mitogen-activated protein kinase (MAPK), viral carcinogenesis, as well as Ras-associated protein-1 (Rap1) and mammalian target of rapamycin (mTOR) signaling. The study provides preliminary data on substantial differences in DNA methylation between WTC-exposed and unexposed populations that require validation in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.