We describe a method for quantitative photoacoustic tomography (PAT) based on the radiative transfer equation (RTE) coupled with the Helmholtz photoacoustic wave equation. This RTE-based quantitative PAT allows for accurate recovery of absolute absorption coefficient images of heterogeneous media and provides significantly improved image reconstruction for the cases where the photon diffusion approximation may fail. The method and associated finite element reconstruction algorithm are validated using a series of tissuelike phantom experiments.
fPAT has the potential to be a significant add-on in breast cancer detection and characterization as it provides submillimeter resolution functional images of breast lesions.
In this paper we describe a method for quantitative photoacoustic tomography (qPAT) based on the photon radiative transfer equation (RTE) coupled with the Helmholtz photoacoustic wave equation. Considerable simulations and tissue-like phantom experiments are conducted to evaluate transport-based qPAT in comparison with diffusion-based qPAT. In these comparative simulations and experiments, we systematically examine the effects of the ratio of mu(a)/mu'(s) (absorption/reduced scattering coefficient), the anisotropy factor (g) and the imaging domain size on the transport- and diffusion-based photoacoustic image reconstruction. The results obtained show that transport-based qPAT allows for clearly more accurate recovery of the absolute absorption coefficient images of heterogeneous media over diffusion-based qPAT for all the cases examined and provides considerably improved image quality for cases where the photon diffusion approximation (DA) is invalid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.