To increase the global convergence and processing efficiency of particle swarm optimization (PSO) applied in the adaptive joint time-frequency, in this study an improved PSO is proposed to refocus the high-resolution SAR images of complex moving vessels in high sea states. According to the characteristics of the high-order multi-component polynomial phase signal, this algorithm provides parallel processing and co-evolution methods by setting the different permissions of the sub-population and sharing its search information. As a result, the multiple components can be extracted simultaneously. Experiments were conducted using the simulation data and Gaofen-3 (GF-3) SAR data. Results showed the processing speed increased by more than 40% and the global convergence was significantly improved. The imaging results verify the efficiency and robustness of this co-evolutionary PSO.
The echo of maneuvering targets can be expressed as a multicomponent polynomial phase signal (mc-PPS), which should be processed by time frequency analysis methods, while, as a modified maximum likelihood (ML) method, the frequency domain extraction-based adaptive joint time frequency (FDE–AJTF) decomposition method is an effective tool. However, the key procedure in the FDE–AJTF method is searching for the optimal parameters in the solution space, which is essentially a multidimensional optimization problem with different extremal solutions. To solve the problem, a novel multicomponent particle swarm optimization (mc-PSO) algorithm is presented and applied in the FDE–AJTF decomposition with the new characteristic that can extract several components simultaneously based on the feature of the standard PSO, in which the population is divided into three groups and the neighborhood of the best particle in the optimal group is set as the forbidden area for the suboptimal group, and then two different independent components can be obtained and extracted in one extraction. To analyze its performance, three simulation tests are carried out and compared with a standard PSO, genetic algorithm, and differential evolution algorithm. According to the tests, it is verified that the mc-PSO has the best performance in that the convergence, accuracy, and stability are improved, while its searching times and computation are reduced.
To improve the robustness of current polarimetric dehazing scheme in the condition of low degree of polarization, we report a polarimetric dehazing method based on the image fusion technique and adaptive adjustment algorithm which can operate well in many different conditions. A splitting focus plane linear polarization camera was employed to grab the images of four different polarization directions, and the haze was separated from the hazy images by low-pass filtering roughly. Then the image fusion technique was used to optimize the method of estimating the transmittance map. To improve the quality of the dehazed images, an adaptive adjustment algorithm was introduced to adjust the illumination distribution of the dehazed images. The outdoor experiments have been implemented and the results indicated that the presented method could restore the target information obviously, and both the visual effect and quantitative evaluation have been enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.