SUMMARY
Expression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense non-coding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the Polycomb Repressive Complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues. In concert with H3K27me recognition, binding to RNA contributes to CBX7 function and disruption of either interaction impacts the ability of CBX7 to repress the INK4b/ARF/INK4a locus and control senescence. Structure-guided analysis reveals the molecular interplay between non-coding RNA and H3K27me as mediated by the conserved chromodomain. Our study suggests a new mechanism by which non-coding RNA participates directly in epigenetic transcriptional repression.
Histone acetylation is important in chromatin remodelling and gene activation. Nearly all known histone-acetyltransferase (HAT)-associated transcriptional co-activators contain bromodomains, which are approximately 110-amino-acid modules found in many chromatin-associated proteins. Despite the wide occurrence of these bromodomains, their three-dimensional structure and binding partners remain unknown. Here we report the solution structure of the bromodomain of the HAT co-activator P/CAF (p300/CBP-associated factor). The structure reveals an unusual left-handed up-and-down four-helix bundle. In addition, we show by a combination of structural and site-directed mutagenesis studies that bromodomains can interact specifically with acetylated lysine, making them the first known protein modules to do so. The nature of the recognition of acetyl-lysine by the P/CAF bromodomain is similar to that of acetyl-CoA by histone acetyltransferase. Thus, the bromodomain is functionally linked to the HAT activity of co-activators in the regulation of gene transcription.
Bromodomains, an extensive family of evolutionarily conserved protein modules originally found in proteins associated with chromatin and in nearly all nuclear histone acetyltransferases, have been recently discovered to function as acetyl-lysine binding domains. More recent structural studies of bromodomain/peptide ligand complexes have enriched our understanding of differences in ligand selectivity of bromodomains. These new findings demonstrate that bromodomain/acetyl-lysine recognition can serve as a pivotal mechanism for regulating protein^protein interactions in numerous cellular processes including chromatin remodeling and transcriptional activation, and reinforce the concept that functional diversity of a conserved protein modular structure is achieved by evolutionary changes of amino acid sequences in the ligand binding site. ß
Summary
Twist is a key transcription activator of epithelial-mesenchymal transition (EMT). It remains unclear how Twist induces gene expression. Here we reported a mechanism by which Twist recruits BRD4 to direct WNT5A expression in basal-like breast cancer (BLBC). Twist contains a “histone H4 mimic” GK-X-GK motif that is di-acetylated by Tip60. The di-acetylated Twist binds the second bromodomain of BRD4, whose first bromodomain interacts with acetylated H4, thereby constructs an activated Twist/BRD4/P-TEFb/RNA-PolII complex at the WNT5A promoter and enhancer. Pharmacologic inhibition of the Twist-BRD4 association reduced WNT5A expression and suppressed invasion, cancer stem cell (CSC)-like properties, and tumorigenicity of BLBC cells. Our study indicates that the interaction with BRD4 is critical for the oncogenic function of Twist in BLBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.