The Ca 2؉ -permeable channel TRPM8 is thought to play an important role in the pathophysiology of prostate cancer. We have investigated the intracellular location of TRPM8 and its role as a Ca 2؉ -permeable channel in an androgen-responsive and an androgen-insensitive prostate cancer cell line. We report evidence from immunofluorescence experiments that in the androgen-responsive LNCaP cell line, the TRPM8 protein is expressed in the endoplasmic reticulum and plasma membrane, acts as a Ca 2؉ -permeable channel (assessed using Fura-2 to measure increases in the cytoplasmic Ca 2؉ concentration) in each of these membranes, and is regulated by androgen. Although TRPM8 was detected in the androgeninsensitive PC-3 cell line, no evidence was obtained for regulation of its expression by androgen. The results of experiments using LNCaP cells, the TRPM8 antagonist capsazepine, and small interference RNA targeted to TRPM8 indicate that TRPM8 is required for cell survival. These results indicate that TRPM8 is an important determinator of Ca 2؉ homeostasis in prostate epithelial cells and may be a potential target for the action of drugs in the management of prostate cancer.
The neurobiological underpinnings of mood modulation, molecular pathophysiology of manic-depressive illness, and therapeutic mechanism of mood stabilizers are largely unknown. The extracellular signal-regulated kinase (ERK) pathway is activated by neurotrophins and other neuroactive chemicals to produce their effects on neuronal differentiation, survival, regeneration, and structural and functional plasticity. We found that lithium and valproate, commonly used mood stabilizers for the treatment of manic-depressive illness, stimulated the ERK pathway in the rat hippocampus and frontal cortex. Both drugs increased the levels of activated phospho-ERK44/42, activated phospho-ribosomal protein S6 kinase-1 (RSK1) (a substrate of ERK), phospho-CREB (cAMP response element-binding protein) and phospho-B cell lymphoma protein-2 antagonist of cell death (substrates of RSK), and BDNF. Inhibiting the ERK pathway with the blood-brain barrier-penetrating mitogen-activated protein kinase (MAP kinase)/ERK kinase (MEK) kinase inhibitor SL327, but not with the nonblood-brain barrier-penetrating MEK inhibitor U0126, decreased immobility time and increased swimming time of rats in the forced-swim test. SL327, but not U0126, also increased locomotion time and distance traveled in a large open field. The behavioral changes in the open field were prevented with chronic lithium pretreatment. SL327-induced behavioral changes are qualitatively similar to the changes induced by amphetamine, a compound that induces relapse in remitted manic patients and mood elevation in normal subjects. These data suggest that the ERK pathway may mediate the antimanic effects of mood stabilizers.
The progression of cells from a normal differentiated state in which rates of proliferation and apoptosis are balanced to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signalling proteins and the evolution and clonal selection of more aggressive cell phenotypes. These events are associated with changes in the expression of numerous other proteins. This process of tumorigenesis involves the altered expression of one or more TRP proteins, depending on the nature of the cancer. The most clearly described changes are those involving TRPM8, TRPV6 and TRPM1. Expression of TRPM8 is substantially increased in androgen-dependent prostate cancer cells, but is decreased in androgen independent and metastatic prostate cancer. TRPM8 expression is regulated, in part, by androgens, most likely through androgen response elements in the TRPM8 promoter region. TRPM8 channels are involved in the regulation of cell proliferation and apoptosis. Expression of TRPV6 is also increased in prostate cancer and in a number of other cancers. In contrast to TRPM8, expression of TRPV6 is not directly regulated by androgens. TRPM1 is highly expressed in early stage melanomas but its expression declines with increases in the degree of aggressiveness of the melanoma. The expression of TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 is also increased in some cancers. The level of expression of TRPM8 and TRPV6 in prostate cancer, and of TRPM1 in melanomas, potentially provides a good prognostic marker for predicting the course of the cancer in individuals. The Drosophila melanogaster, TRPL, and the TRPV1 and TRPM8 proteins, have been used to try to develop strategies to selectively kill cancer cells by activating Ca(2+) and Na(+) entry, producing a sustained increase in the cytoplasmic concentration of these ions, and subsequent cell death by apoptosis and necrosis. TRPV1 is expressed in neurones involved in sensing cancer pain, and is a potential target for pharmacological inhibition of cancer pain in bone metastases, pancreatic cancer and most likely in other cancers. Further studies are required to assess which other TRP proteins are associated with the development and progression of cancer, what roles TRP proteins play in this process, and to develop further knowledge of TRP proteins as targets for pharmaceutical intervention and targeting in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.