In this study, a series of tribological tests were conducted on a pin-on-disc tester to study the lubrication mechanism of SiO2 nanoparticles under different surface roughness considering various loads and velocities. For a comprehensive understanding of the mechanism of SiO2 nanoparticles, base fluid was also employed as a contrast. Results show that the reductions of friction coefficients and wear scar widths increase with the decrease of surface roughness, due to the increase in rolling effect and self-repairing mechanism of SiO2 nanoparticles. The lubrication mechanism of SiO2 nanoparticles is the rolling effect when the height-diameter ratio (λ) is less than 6, and the self-repairing mechanism at λ of 6 and 10, whereas, there is no obvious difference by adding nanoparticles when λ is 20. When the height-diameter ratio is less than 6, surface wears show an increasing trend as the load increases due to the high hardness of nanoparticles, while it is the opposite at λ of 10 and 20 because of the self-repairing mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.