An acceleration sensor is an essential component of the vibration measurement, while the passivity and sensitivity are the pivotal features for its application. Here, we report a self-powered and highly sensitive acceleration sensor based on a triboelectric nanogenerator composed of a liquid metal mercury droplet (LMMD) and nanofiber-networked polyvinylidene fluoride (nn-PVDF) film. Due to the ultrahigh surface-to-volume ratio of nn-PVDF film and high surface tension, high mass density, high elastic as well as mechanical robustness of LMMD, the open-circuit voltage and short-circuit current reach up to 15.5 V and 300 nA at the acceleration of 60 m/s, respectively. The acceleration sensor has a wide detection range from 0 to 60 m/s with a high sensitivity of 0.26 V·s/m. Also, the output voltage and current show a negligible decrease over 200,000 cycles, evidently presenting excellent stability. Moreover, a high-speed camera was employed to dynamically capture the motion state of the acceleration sensor for insight into the corresponding work mechanism. Finally, the acceleration sensor was demonstrated to measure the vibration of mechanical equipment and human motion in real time, which has potential applications in equipment vibration monitoring and troubleshooting.
Each year the Mythimna separate (Walker), undertakes a seasonal, long-distance, multigeneration roundtrip migration between southern and northern China. Despite its regularity, the decision to migrate is facultative, and is controlled by environmental, physiological, hormonal, genetic, and molecular factors. Migrants take off on days 1 or 2 after eclosion, although the preoviposition period lasts ≈7 d. The trade-offs among the competing physiological demands of migration and reproduction are coordinated in M. separata by the "oogenesis-flight syndrome." Larvae that experience temperatures above or below certain thresholds accompanied by appropriate humidity, short photoperiod, poor nutrition, and moderate density tend to develop into migrants. However, there is a short window of sensitivity within 24 h after adult eclosion when migrants can be induced to switch to reproductive residents if they encounter extreme environmental factors including starvation, low temperature and long photoperiod. Juvenile hormone (JH) titer is low before migration but high titers are associated with termination of migratory behavior and the switch to reproduction. Early release of JH by the corpora allata in environmentally stressed 1-d old adults, otherwise destined by larval conditions to be migrants, switches them to residents. Offspring inherit parental additive genetic effects governing migratory behavior. However, they also retain flexibility in expression of both flight and reproductive life history traits. The insect neuropeptide, allatotropin, which activates corpora allata to synthesize JH, controls adult flight and reproduction. Future research directions to better understand regulation of migration in this species are discussed.
We propose a flexible wireless pressure sensor, which uses a graphene/polydimethylsiloxane (GR/PDMS) sponge as the dielectric layer. The sponge is sandwiched between two surfaces of a folded flexible printed circuit with patterned Cu as the antenna and electrode. By adjusting graphene and NH 4 HCO 3 concentrations, a composite with 20% concentration of NH 4 HCO 3 and 2% concentration of graphene as the dielectric layer is obtained, which exhibits high sensitivity (2.2 MHz/kPa), wide operating range (0–500 kPa), rapid response time (~7 ms), low detection limit (5 Pa), and good stability, recoverability, and repeatability. In addition, the sensor is sensitive to finger bending and facial muscle movements for smile and frown, that are transmitted using wireless electromagnetic coupling; therefore, it has potential for a wide range of applications such as intelligent robots, bionic-electronic skin and wearable electronic devices.
DgNAC1, a transcription factor of chrysanthemum, was functionally verified to confer salt stress responses by regulating stress-responsive genes. NAC transcription factors play effective roles in resistance to different abiotic stresses, and overexpressions of NAC TFs in Arabidopsis have been proved to be conducive in improving salinity tolerance. However, functions of NAC genes in chrysanthemum continue to be poorly understood. Here, we performed physiology and molecular experiments to evaluate roles of DgNAC1 in chrysanthemum salt stress responses. In this study, DgNAC1-overexpressed chrysanthemum was obviously more resistant to salt over the WT (wild type). Specifically, the transgenic chrysanthemum showed a higher survival rate and lower EC (electrolyte conductivity) than WT under salt stress. The transgenic chrysanthemum also showed fewer accumulations of MDA (malondialdehyde) and reactive oxygen species (HO and O), greater activities of SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase), as well as more proline content than WT under salt stress. Furthermore, stress-responsive genes in transgenic chrysanthemum were greater up-regulated than in WT under salinity stress. Thus, all results revealed that DgNAC1 worked as a positive regulator in responses to salt stress and it may be an essential gene for molecular breeding of salt-tolerant plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.