Fe5 C2 NPs exhibit a high contrast in magnetic resonance imaging (MRI), superior photoacoustic tomography improvements, and efficient photothermal therapy (PTT) due to their unique core/shell structure, with a magnetic core and carbon shell. By conjugating a new class of affinity proteins (ZHER2:342), they can target to tumor cells with low cytotoxicity, and kill them through laser irritation. It is also possible to ablate tumors under guidance by MRI and PTT without noticeable side effects.
Although microRNAs (miRNA) have been broadly studied in cancer, comparatively less is understood about their role in progression. Here we report that miR-153 has a dual role during progression of colorectal cancer by enhancing cellular invasiveness and platinum-based chemotherapy resistance. miRNA profiling revealed that miR-153 was highly expressed in a cellular model of advanced stage colorectal cancer. Its upregulation was also noted in primary human colorectal cancer compared with normal colonic epithelium and in more advanced colorectal cancer stages compared with early stage disease. In colorectal cancer patients followed for 50 months, 21 of 30 patients with high levels of miR-153 had disease progression compared with others in this group with low levels of miR-153. Functional studies revealed that miR-153 upregulation increased colorectal cancer invasiveness and resistance to oxaliplatin and cisplatin both in vitro and in vivo. Mechanistic investigations indicated that miR-153 promoted invasiveness indirectly by inducing matrix metalloprotease enzyme 9 production, whereas drug resistance was mediated directly by inhibiting the Forkhead transcription factor Forkhead box O3a (FOXO3a). In support of the latter finding, we found that levels of miR-153 and FOXO3a were inversely correlated in matched human colorectal cancer specimens. Our findings establish key roles for miR-153 overexpression in colorectal cancer progression, rationalizing therapeutic strategies to target expression of this miRNA for colorectal cancer treatment. Cancer Res; 73(21); 6435-47. Ó2013 AACR.
Background: A therapeutic strategy involving combined treatment with lenvatinib plus pembrolizumab (LEP) has demonstrated a relatively high antitumor response in several solid tumors; however, the efficacy and safety of LEP in patients with refractory bile tract carcinoma (BTC) remains unknown.Methods: This is a single-arm study for a preliminary assessment of the efficacy and tolerability of LEP in patients who experienced progression from prior systemic treatments. Pre-treatment tumor tissues were collected to retrospectively evaluate the expression status of PDL1.Results: Thirty-two patients received second-line and above treatment with LEP. Overall, the objective response rate (ORR) was 25%, the disease control rate (DCR) was 78.1%, and the clinical benefit rate (CBR) was 40.5%. The median progression-free survival (PFS) was 4.9 months (95% CI: 4.7-5.2 months), and the median overall survival (OS) was 11.0 months (95% CI: 9.6-12.3 months). For tolerability, no grade 5 serious adverse events (AEs) were reported. All patients had any-grade AEs, and 59.3% of the patients experienced grade 3 AEs, while only 1 patient experienced a grade 4 AE of stomach bleeding. Fatigue was the most common AE, followed by hypertension and elevated aminotransferase levels. Retrospective analysis for PDL1 expression revealed that PDL1 positive tumor cells were associated with improved clinical benefits and survival outcomes.Conclusions: LEP is a promising alternative as a non-first-line therapeutic regimen for patients with refractory BTC. Furthermore, well-designed prospective clinical trials with a control arm are still needed to obtain more evidences to confirm the efficacy and safety of this particular regimen as well as the role of PDL1 expression.
The Hippo pathway plays a critical role in cell growth and tumorigenesis. The activity of TEA domain transcription factor 4 (TEAD4) determines the output of Hippo signaling; however, the regulation and function of TEAD4 has not been explored extensively. Here, we identified glucocorticoids (GC) as novel activators of TEAD4. GC treatment facilitated glucocorticoid receptor (GR)-dependent nuclear accumulation and transcriptional activation of TEAD4. TEAD4 positively correlated with GR expression in human breast cancer, and high expression of TEAD4 predicted poor survival of patients with breast cancer. Mechanistically, GC activation promoted GR interaction with TEAD4, forming a complex that was recruited to the TEAD4 promoter to boost its own expression. Functionally, the activation of TEAD4 by GC promoted breast cancer stem cells maintenance, cell survival, metastasis, and chemoresistance both in vitro and in vivo. Pharmacologic inhibition of TEAD4 inhibited GC-induced breast cancer chemoresistance. In conclusion, our study reveals a novel regulation and functional role of TEAD4 in breast cancer and proposes a potential new strategy for breast cancer therapy. Significance: This study provides new insight into the role of glucocorticoid signaling in breast cancer, with potential for clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.