Hierarchical tubular structures constructed by ultrathin carbon-coated SnO(2) nanoplates are rationally designed and synthesized. This interesting structure simultaneously integrates the structural and compositional design rationales for high-energy anode materials based on low-dimensional ultrathin nanoplates, a hollow tubular structure, and a carbon nanocoating. When evaluated as an anode material for lithium-ion batteries, the as-synthesized SnO(2)-carbon hybrid structure manifests high specific capacity and excellent cycling stability.
We report herein the first example of interpenetration isomerism in covalent organic frameworks (COFs). As a well-known three-dimensional (3D) COF, COF-300 was synthesized and characterized by the Yaghi group in 2009 as a 5-fold interpenetrated diamond structure ( dia-c5 topology). We found that adding an aging process prior to the reported synthetic procedure afforded the formation of an interpenetration isomer, dia-c7 COF-300. The 7-fold interpenetrated diamond structure of this new isomer was identified by powder X-ray diffraction and rotation electron diffraction analyses. Furthermore, we proposed a universal formula to accurately determine the number of interpenetration degrees of dia-based COFs from only the unit cell parameters and the length of the organic linker. This work not only provides a novel example to the category of interpenetration isomerism but also provides new insights for the further development of 3D COFs.
The shape-selective catalysis enabled by zeolite micropore’s molecular-sized sieving is an efficient way to reduce the cost of chemical separation in the chemical industry. Although well studied since its discovery, HZSM-5′s shape-selective capability has never been fully exploited due to the co-existence of its different-sized straight channels and sinusoidal channels, which makes the shape-selective p-xylene production from toluene alkylation with the least m-xylene and o-xylene continue to be one of the few industrial challenges in the chemical industry. Rather than modifications which promote zeolite shape-selectivity at the cost of stability and reactivity loss, here inverse Al zoned HZSM-5 with sinusoidal channels predominantly opened to their external surfaces is constructed to maximize the shape-selectivity of HZSM-5 sinusoidal channels and reach > 99 % p-xylene selectivity, while keeping a very high activity and good stability ( > 220 h) in toluene methylation reactions. The strategy shows good prospects for shape-selective control of molecules with tiny differences in size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.