The corpus callosum is the largest commissural system in the mammalian brain, but the mechanisms underlying its development are not well understood. Here we report that neuronal activity is necessary for the normal development and maintenance of callosal projections in the mouse somatosensory cortex. We labeled a subpopulation of layer II/III callosal neurons via in utero electroporation and traced their axons in the contralateral cortex at different postnatal stages. Callosal axons displayed region-and layer-specific projection patterns within the first 2 weeks postnatally. Prenatal suppression of neuronal excitation was achieved via electroporation-induced overexpression of the inward rectifying potassium channel Kir2.1 in layer II/III cortical neurons. This resulted in abnormal callosal projections with many axons extending beyond layers II-III to terminate in layer I. Others failed to terminate at the border between the primary and secondary somatosensory cortices. Blocking synaptic transmission via expression of the tetanus toxin light chain (TeNT-LC) in these axons produced a more pronounced reduction in the projections to the border region, and the eventual disappearance of callosal projections over the entire somatosensory cortex. When Kir2.1 and TeNT-LC were coexpressed, callosal axon targeting exhibited a more severe phenotype that appeared to represent the addition of the effects produced by individual expression of Kir2.1 and TeNT-LC. These results underscore the importance of activity in regulating the developing neural connections and suggest that neuronal and synaptic activities are involved in regulating different aspects of the development of callosal projection.
Accumulating clinical observations suggest pathogenesis beyond viral pneumonia and its secondary consequences in COVID-19 patients. In particular, many patients develop profound hyperinflammation and hypercoagulopathy with disseminated thrombogenesis and thromboembolism, which we observe also in a Swedish COVID-19 intensive care patient cohort. To understand these vascular manifestations, it is important to establish the potential vascular entry point(s) of the SARS-CoV-2 virus, i.e. which vascular cell types express the SARS-CoV-2 receptor ACE2. We present data that ACE2 is specifically and highly expressed in microvascular pericytes, but absent from endothelial cells, perivascular macrophages and fibroblasts. Mice with pericyte ablation show increased expression and release of Von Willebrand Factor from microvascular endothelial cells, suggesting that pericytes orchestrate thrombogenic responses in neighboring endothelial cells. Identifying pericytes rather than endothelial cells as the ACE2-expressing cells in the vasculature may explain why hypertension, diabetes and obesity are risk factors for severe COVID-19 patients, as these conditions are characterized by an impaired endothelial barrier function, allowing SARS-CoV-2 to reach and infect the pericytes that are normally shielded from the blood behind an intact endothelial barrier. This novel COVID-19-(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
Highlights d Cul3 mutant mice exhibits social behavioral deficits and anxiety-like behaviors d CUL3 deficiency impairs neurotransmission, excitability, and E-I balance d Protein translation and synaptic vesicle turnover are increased in Cul3 mutant mice d Inhibiting protein translation rescues social behavior and neurotransmission deficits
Additional use of TMZ in CHF patients may decrease hospitalization for cardiac causes, improve clinical symptoms and cardiac function, and simultaneously ameliorate left ventricular remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.