Personalized hashtag recommendation methods aim to suggest users hashtags to annotate, categorize, and describe their posts. The hashtags, that a user provides to a post (e.g., a micro-video), are the ones which in her mind can well describe the post content where she is interested in. It means that we should consider both users' preferences on the post contents and their personal understanding on the hashtags. Most existing methods rely on modeling either the interactions between hashtags and posts or the interactions between users and hashtags for hashtag recommendation. These methods have not well explored the complicated interactions among users, hashtags, and micro-videos. In this paper, towards the personalized micro-video hashtag recommendation, we propose a Graph Convolution Network based Personalized Hashtag Recommendation (GCN-PHR) model, which leverages recently advanced GCN techniques to model the complicate interactions among and learn their representations. In our model, the users, hashtags, and micro-videos are three types of nodes in a graph and they are linked based on their direct associations. In particular, the message-passing strategy is used to learn the representation of a node (e.g., user) by aggregating the message passed from the directly linked other types of nodes (e.g., hashtag and micro-video). Because a user is often only interested in certain parts of a micro-video and a hashtag is typically used to describe the part (of a micro-video) that the user is interested in, we leverage the attention mechanism to filter the message passed from microvideos to users and hashtags, which can significantly improve the representation capability. Extensive experiments have been conducted on two real-world micro-video datasets and demonstrate that our model outperforms the state-of-the-art approaches by a large margin.
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem -when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
CCS CONCEPTS• Information systems → Recommender systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.