Cit a tio n fo r fin al p u blis h e d ve r sio n:Yue, G u a n g h ui, C h e n g, Di, Li, Lei d a, Z h o u, Tia n w ei, Liu, H a n t a o ORCID: h t t p s://o r ci d.
With the boom of deep neural networks, blind image quality assessment (BIQA) has achieved great processes. However, the current BIQA metrics are limited when evaluating low-quality images as compared to medium-quality and highquality images, which restricts their applications in real world problems. In this paper, we first identify that two challenges caused by distribution shift and long-tailed distribution lead to the compromised performance on low-quality images. Then, we propose an intermediary enhancement-based bilateral network with iterative training strategy for solving these two challenges. Drawing on the experience of transitive transfer learning, the proposed metric adaptively introduces enhanced intermediary images to transfer more information to low-quality images for mitigating the distribution shift. Our metric also adopts an iterative training strategy to deal with the long-tailed distribution. This strategy decouples feature extraction and score regression for better representation learning and regressor training. It not only transfers the knowledge learned from the earlier stage to the latter stage, but also makes the model pay more attention to long-tailed low-quality images. We conduct extensive experiments on five authentically distorted image quality datasets. The results show that our metric significantly improves the evaluating performance on low-quality images and delivers state-of-the-art intra-dataset results. During generalization tests, our metric also achieves the best cross-dataset performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.