National inventories of anthropogenic greenhouse gas (GHG) emissions (implementation of the National Communications) are organized according to five main sectors, namely: Energy, Industrial Processes, Agriculture, Land-Use Change and Forestry (LUCF) and Waste. The objective of this study was to review and calculate the potential of greenhouse gas mitigation strategies in Brazil for the Agricultural and LUCF. The first step consisted in an analysis of Brazilian official and unofficial documents related to climate change and mitigation policies. Secondly, business as usual (BAU) and mitigation scenarios were elaborated for the 2010-2020 timeframe, and calculations of the corresponding associated GHG emissions and removals were performed. Additionally, two complementary approaches were used to point out and quantify the main mitigation options: a) following the IPCC 1996 guidelines and b) based on EX-ACT. Brazilian authorities announced that the country will target a reduction in its GHG between 36.1 and 38.9% from projected 2020 levels. This is a positive stand that should also be adopted by other developing countries. To reach this government goal, agriculture and livestock sectors must contribute with an emission reduction of 133 to 166 Mt CO 2 -eq. This seems to be reachable when confronted to our mitigation option values, which are in between the range of 178.3 to 445 Mt CO 2 -eq. Government investments on agriculture are necessary to minimize the efforts from the sectors to reach their targets. Key words: IPCC, EX-ACT, emission reduction, carbon fixation Opções de mitigação de gases do efeito estufa na mudança do uso da terra, pecuária e agricultura no Brasil RESUMO: Inventários nacionais acerca de emissões de gases do efeito estufa (GEE) (refinamentos das Comunicações Nacionais) são organizadas de acordo com cinco principais setores, a saber: Energia, Processos Industriais, Agropecuária, Mudanças do Uso da Terra e Florestas e Tratamento de Resíduos. O objetivo dessa revisão foi calcular o potencial das estratégias de mitigação de GEE no Brasil para agropecuária e mudança de uso da terra e florestas. A primeira etapa consistiu na análise de documentos oficiais e não-oficiais do Brasil relacionados a mudanças climáticas e políticas de mitigação. O cenário atual, sem adoção de ações mitigadoras (BAU), e os cenários de mitigação foram elaborados para o período 2010-2020. Efetuaram-se os cálculos associados às emissões e remoções de GEE. Adicionalmente, duas estratégias foram utilizadas para destacar e quantificar as principais opções de mitigação: a) seguindo metodologia do IPCC 1996 e b) baseando-se no EX-ACT. Autoridades brasileiras anunciaram que o país buscará reduzir sua taxa de emissão de GEE em 36.1 a 38.9% em relação a 2020. Este é um posicionamento positivo que deve ser adotado por outros países em desenvolvimento. Para alcançar essa meta governamental, os setores agricultura e pecuária devem contribuir reduzindo a emissão em 133 a 166 Mt CO 2 -eq. Tal redução parece ser atingível quando confr...
As oil palm has been considered one of the most favorable oilseeds for biodiesel production in Brazil, it is important to understand how cultivation of this perennial crop will affect the dynamics of soil organic carbon (SOC) in the long term. The aim of this study was to evaluate the changes in soil C stocks after the conversion of forest and pasture into oil palm production in the Amazon Region. Soil samples were collected in March 2008 and September 2009 in five areas: native forest (NARF), pasture cultivated for 55 years (PAST), and oil palm cultivated for 4 (OP-4), 8 (OP-8) and 25 years (OP-25), respectively. Soils were sampled in March 2008 to evaluate the spatial variability of SOC and nitrogen (N) contents in relation to the spacing between trees. In September 2009, soils were sampled to evaluate the soil C stocks in the avenues (inter rows) and frond piles, and to compare the total C stocks with natural forest and pasture system. Soil C contents were 22-38% higher in the area nearest the oil palm base (0.6 m) than the average across the inter row (0-4.5 m from the tree), indicating that the increment in soil organic matter (SOM) must have been largely derived from root material. The soil C stocks under palm frond piles were 9-26% higher than in the inter rows, due to inputs of SOM by pruned palm fronds. The soil carbon stocks in oil palm areas, after adjustments for differences in bulk density and clay content across treatments, were 35-46% lower than pasture soil C stocks, but were 0-18% higher than the native forest soil C content. The results found here may be used to improve the life cycle assessment of biodiesel derived from palm oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.