Being able to observe the formation of multi-material nanostructures in situ, simultaneously from a morphological and crystallographic perspective, is a challenging task. Yet, this is essential for the fabrication of nanomaterials with well-controlled composition exposing the most active crystallographic surfaces, as required for highly active catalysts in energy applications. To demonstrate how X-ray ptychography can be combined with scanning nanoprobe diffraction to realize multimodal imaging, we study growing Cu2O nanocubes and their transformation into Au nanocages. During the growth of nanocubes at a temperature of 138 °C, we measure the crystal structure of an individual nanoparticle and determine the presence of (100) crystallographic facets at its surface. We subsequently visualize the transformation of Cu2O into Au nanocages by galvanic replacement. The nanocubes interior homogeneously dissolves while smaller Au particles grow on their surface and later coalesce to form porous nanocages. We finally determine the amount of radiation damage making use of the quantitative phase images. We find that both the total surface dose as well as the dose rate imparted by the X-ray beam trigger additional deposition of Au onto the nanocages. Our multimodal approach can benefit in-solution imaging of multi-material nanostructures in many related fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.