This paper describes a practical algorithm based on Monte Carlo simulation for the pricing of multidimensional American (i.e., continuously exercisable) and Bermudan (i.e., discretely exercisable) options. The method generates both lower and upper bounds for the Bermudan option price and hence gives valid confidence intervals for the true value. Lower bounds can be generated using any number of primal algorithms. Upper bounds are generated using a new Monte Carlo algorithm based on the duality representation of the Bermudan value function suggested independently in Haugh and Kogan (2004) and Rogers (2002). Our proposed algorithm can handle virtually any type of process dynamics, factor structure, and payout specification. Computational results for a variety of multifactor equity and interest-rate options demonstrate the simplicity and efficiency of the proposed algorithm. In particular, we use the proposed method to examine and verify the tightness of frequently used exercise rules in Bermudan swaption markets.American options, Bermudan options, Bermudan swaptions, Monte Carlo simulation, Libor market model, option pricing, multiple state variables, real options
This paper presents two new models of portfolio default loss that extend the standard Gaussian copula model yet preserve tractability and computational efficiency. In one extension, we randomize recovery rates, explicitly allowing for the empirically well-established effect of inverse correlation between recovery rates and default frequencies. In another extension, we build into the model random systematic factor loadings, effectively allowing default correlations to be higher in bear markets than in bull markets. In both extensions, special cases of the models are shown to be as tractable as the Gaussian copula model and to allow efficient calibration to market credit spreads. We demonstrate that the models-even in their simplest versions-can generate highly significant pricing effects such as fat tails and a correlation "skew" in synthetic CDO tranche prices. When properly calibrated, the skew effect of random recovery is quite minor, but the extension with random factor loadings can produce correlation skews similar to the steep skews observed in the market. We briefly discuss two alternative skew models, one based on the Marshall-Olkin copula, the other on a spread-dependent correlation specification for the Gaussian copula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.