The photocatalyst bismuth oxide, which is active under visual light, was deposited using an atmospheric pressure plasma jet (APPJ). Sixteen different samples were generated under different parameters of the APPJ to investigate their catalytic activity. The prepared samples were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), laser scanning microscopy (LSM), and UV–vis diffuse reflectance absorption spectroscopy. The measured data, such as average sample thickness, coverage ratio, phase fraction, chemical composition, band gap, and photocatalytic performance were used for comparing the samples. The XRD analysis showed that the deposition process produced a mixed phase of monocline Bi2O3 and tetragonal Bi2O2.33. Using the Rietveld refinement method, phase fractions could be determined and compared with the XPS data. The non-stoichiometric phases were influenced by the introduction of nitrogen to the surface as a result of the deposition process. The band gap calculated from the diffuse absorption spectroscopy shows that Bi2O2.33 with 2.78 eV had a higher band gap compared to the phases with a high proportion of Bi2O3 (2.64 eV). Furthermore, it was shown that the band gap was dependent on the thickness of the sample and oxygen vacancies or loss of oxygen in the surface. All coatings had degraded methyl orange (MO) under irradiation by xenon lamps.
X-ray absorption spectroscopy (XAS) is a powerful element-specific technique that allows the study of structural and chemical properties of matter. Often an indirect method is used to access the X-ray absorption (XA). This work demonstrates a new XAS implementation that is based on off-axis transmission Fresnel zone plates to obtain the XA spectrum of La0.6Sr0.4MnO3 by analysis of three emission lines simultaneously at the detector, namely the O 2p–1s, Mn 3s–2p and Mn 3d–2p transitions. This scheme allows the simultaneous measurement of an integrated total fluorescence yield and the partial fluorescence yields (PFY) of the Mn 3s–2p and Mn 3d–2p transitions when scanning the Mn L-edge. In addition to this, the reduction in O fluorescence provides another measure for absorption often referred to as the inverse partial fluorescence yield (IPFY). Among these different methods to measure XA, the Mn 3s PFY and IPFY deviate the least from the true XA spectra due to the negligible influence of selection rules on the decay channel. Other advantages of this new scheme are the potential to strongly increase the efficiency and throughput compared with similar measurements using conventional gratings and to increase the signal-to-noise of the XA spectra as compared with a photodiode. The ability to record undistorted bulk XA spectra at high flux is crucial for future in situ spectroscopy experiments on complex materials.
Atomic layer deposition (ALD) has been proven as an excellent method for depositing high-quality optical coatings due to its outstanding film quality and precise process control. Unfortunately, batch ALD requires time-consuming purge steps, which leads to low deposition rates and highly time-intensive processes for complex multilayer coatings. Recently, rotary ALD has been proposed for optical applications. In this, to the best of our knowledge, novel concept, each process step takes place in a separate part of the reactor divided by pressure and nitrogen curtains. To be coated, substrates are rotated through these zones. During each rotation, an ALD cycle is completed, and the deposition rate depends primarily on the rotation speed. In this work, the performance of a novel rotary ALD coating tool for optical applications is investigated and characterized with SiO2 and Ta2O5 layers. Low absorption levels of <3.1ppm and <6.0ppm are demonstrated at 1064 nm for around 186.2 nm thick single layers of Ta2O5 and 1032 nm SiO2, respectively. Growth rates up to 0.18 nm/s on fused silica substrates were achieved. Furthermore, excellent non-uniformity is also demonstrated, with values reaching as low as ±0.53% and ±1.07% over an area of 135×60mm for Ta2O5 and SiO2, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.