Light-weight paper products that contain less fibres, but with a maintained bulk and improved strength properties, are highly desirable due to the low cost of raw materials and improved logistics of packaged goods. In this respect, the adsorption capacity of dry strength additives onto fibres, which is affected by the surface charge of said fibres, is very important for the development of these mechanically robust paper products. The influence of the surface charge on the adsorption of strength additives was investigated for, dissolving grade fibres, kraft fibres and kraft fibres modified with carboxymethyl cellulose (CMC) with different surface charge densities, but the same fibre dimensions. The strength additives investigated were cationic starch (CS), anionic polyacrylamide (APAM) and polyelectrolyte complexes (PECs), containing CS and APAM. A linear relationship was found between the surface charge of the fibres and the saturated adsorbed amount of CS. However, when either APAM or PECs adsorbed as secondary layers onto the CS, no correlation between cellulose charge and the saturation adsorption could be observed. The adsorption of APAM was dramatically affected by the pre-adsorbed amount of CS, whereas PECs were less influenced. Moreover, the additives improved the tensile strength (60%) and strain at break (> 100%) of handsheets formed with the kraft fibres and adsorbed APAM. It was also found that CS/APAM increased the sheet density while CS/PECs lowered it. In conclusion, the gained fundamental understanding of these adsorption of additives is of significant importance to facilitate the industrial development of sustainable low-cost high-end packaging products. Graphical abstract
The use of paper dry strength additives is one of the methods for producing packaging boards with a lower grammage while maintaining mechanical properties. In the present work, papers were formed using dissolving grade kraft fibres, kraft fibres and carboxymethylated cellulose (CMC) modified kraft fibres (C-kraft fibres), with either cationic starch (CS), anionic polyacrylamide (APAM) or anionic polyelectrolyte complexes (PECs). Fibres and sheets were characterized to evaluate how the saturation adsorption of the different strength additives influences the properties of the treated fibres and the final handsheets. The tensile index of papers made from C-kraft fibres was the highest due to the highest adsorption capacity of strength additives. Moreover, the strength additives increased the tensile index by 33–84 %, while z-directional tensile strength was increased dramatically by 46–139 %. Bending stiffness was improved by 2.6–25 %, and the combination of CS and APAM or PECs resulted in a significant improvement in bending stiffness compared to the addition of CS alone. Importantly, the strength improvement did not sacrifice the density significantly. In summary, the knowledge gained from the current study expands the understanding of strength additives and their relationship with fibres of different surface charge and the overall paper properties.
By removing the primary fines from an oxygen-delignified mill birch pulp, a fiber fraction was obtained having low metals content and no extractives. After DEDeD bleaching the fiber fraction had somewhat higher brightness and better brightness stability than the birch pulp containing the primary fines. The fines fraction was enriched with lignin, extractives, xylan, and metals. Bleaching the fines fraction in a QQP sequence did not affect the extractives, whereas a ZeQP sequence clearly reduced the extractives content. In a biorefinery concept, the fines fraction could be utilized as a source of xylan, fatty acids, sterols, and betulinol. Another possibility is to use the fines fraction unbleached or separately bleached as a bonding material in various fiber furnishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.