We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10⁻⁸). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease
Genome-wide association studies (GWAS) and candidate gene studies in ulcerative colitis (UC) have identified 18 susceptibility loci. We conducted a meta-analysis of 6 UC GWAS, comprising 6,687 cases and 19,718 controls, and followed-up the top association signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P<5×10-8), increasing the number of UC associated loci to 47. After annotating associated regions using GRAIL, eQTL data and correlations with non-synonymous SNPs, we identified many candidate genes providing potentially important insights into disease pathogenesis, including IL1R2, IL8RA/B, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease (IBD) risk loci is now 99, including a minimum of 28 shared association signals between Crohn’s disease (CD) and UC.
More than a thousand disease susceptibility loci have been identified via genome-wide association studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of causal variants underlying these findings generally remain to be defined. We utilize pooled next-generation sequencing to study 56 genes in regions associated to Crohn’s Disease in 350 cases and 350 controls. Follow up genotyping of 70 rare and low-frequency protein-altering variants (MAF ~ .001-.05) in nine independent case-control series (16054 CD patients, 12153 UC patients, 17575 healthy controls) identifies four additional independent risk factors in NOD2, two additional protective variants in IL23R, a highly significant association to a novel, protective splice variant in CARD9 (p < 1e-16, OR ~ 0.29), as well as additional associations to coding variants in IL18RAP, CUL2, C1orf106, PTPN22 and MUC19. We extend the results of successful GWAS by providing novel, rare, and likely functional variants that will empower functional experiments and predictive models.
Ulcerative colitis (UC) is a chronic, relapsing inflammatory condition of the gastrointestinal tract with a complex genetic and environmental etiology. We performed two distinct UC genome-wide association (GWA) studies, and analyzed these jointly with a previously published scan1, comprising, in aggregate, 2,693 patients with UC and 6,791 controls. A total of 59 SNPs from 14 independent loci attained P < 10−5. Seven of these loci exceeded genome-wide significance (P < 5 × 10−8). After testing an independent cohort of 2009 patients with UC and 1580 controls, 14 loci were significantly associated, including novel UC associations with FCGR2A, 5p15, 2p16, CARD9 and ORMDL3. In our study we confirmed association with 14 previously identified UC susceptibility loci, while an analysis of acknowledged Crohn's disease (CD) loci showed that roughly half of known CD associations are shared with UC. These data implicate approximately 30 loci for UC, providing novel insights into disease pathogenesis.
Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.