Gene set analysis (GSA) is used to elucidate genome-wide data, in particular transcriptome data. A multitude of methods have been proposed for this step of the analysis, and many of them have been compared and evaluated. Unfortunately, there is no consolidated opinion regarding what methods should be preferred, and the variety of available GSA software and implementations pose a difficulty for the end-user who wants to try out different methods. To address this, we have developed the R package Piano that collects a range of GSA methods into the same system, for the benefit of the end-user. Further on we refine the GSA workflow by using modifications of the gene-level statistics. This enables us to divide the resulting gene set P-values into three classes, describing different aspects of gene expression directionality at gene set level. We use our fully implemented workflow to investigate the impact of the individual components of GSA by using microarray and RNA-seq data. The results show that the evaluated methods are globally similar and the major separation correlates well with our defined directionality classes. As a consequence of this, we suggest to use a consensus scoring approach, based on multiple GSA runs. In combination with the directionality classes, this constitutes a more thorough basis for an enriched biological interpretation.
SummaryPdgfra+ oligodendrocyte precursor cells (OPCs) arise in distinct specification waves during embryogenesis in the central nervous system (CNS). It is unclear whether there is a correlation between these waves and different oligodendrocyte (OL) states at adult stages. Here, we present bulk and single-cell transcriptomics resources providing insights on how transitions between these states occur. We found that post-natal OPCs from brain and spinal cord present similar transcriptional signatures. Moreover, post-natal OPC progeny of E13.5 Pdgfra+ cells present electrophysiological and transcriptional profiles similar to OPCs derived from subsequent specification waves, indicating that Pdgfra+ pre-OPCs rewire their transcriptional network during development. Single-cell RNA-seq and lineage tracing indicates that a subset of E13.5 Pdgfra+ cells originates cells of the pericyte lineage. Thus, our results indicate that embryonic Pdgfra+ cells in the CNS give rise to distinct post-natal cell lineages, including OPCs with convergent transcriptional profiles in different CNS regions.
BackgroundSuccinate dehydrogenase (SDH) is a mitochondrial metabolic enzyme complex involved in both the electron transport chain and the citric acid cycle. SDH mutations resulting in enzymatic dysfunction have been found to be a predisposing factor in various hereditary cancers. Therefore, SDH has been implicated as a tumor suppressor.ResultsWe identified that dysregulation of SDH components also occurs in serous ovarian cancer, particularly the SDH subunit SDHB. Targeted knockdown of Sdhb in mouse ovarian cancer cells resulted in enhanced proliferation and an epithelial-to-mesenchymal transition (EMT). Bioinformatics analysis revealed that decreased SDHB expression leads to a transcriptional upregulation of genes involved in metabolic networks affecting histone methylation. We confirmed that Sdhb knockdown leads to a hypermethylated epigenome that is sufficient to promote EMT. Metabolically, the loss of Sdhb resulted in reprogrammed carbon source utilization and mitochondrial dysfunction. This altered metabolic state of Sdhb knockdown cells rendered them hypersensitive to energy stress.ConclusionsThese data illustrate how SDH dysfunction alters the epigenetic and metabolic landscape in ovarian cancer. By analyzing the involvement of this enzyme in transcriptional and metabolic networks, we find a metabolic Achilles’ heel that can be exploited therapeutically. Analyses of this type provide an understanding how specific perturbations in cancer metabolism may lead to novel anticancer strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/2049-3002-2-21) contains supplementary material, which is available to authorized users.
Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the downregulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.