Summary: Photoinduced electron transfer (PET) is a phenomenon wherein the absorption of light by a chemical species provides an energetic driving force for an electron transfer reaction. 1 – 4 This mechanism is relevant in many areas of chemistry, including the study of natural and artificial photosynthesis, photovoltaics, and photosensitive materials. In recent years, research in the area of photoredox catalysis has leveraged PET for the catalytic generation of both neutral and charged organic free radical species. These technologies have enabled a wide range of previously inaccessible chemical transformations and have seen widespread utilization in both academic and industrial settings. These reactions are often catalyzed by visible-light absorbing organic molecules or transition-metal complexes of ruthenium, iridium, chromium, or copper. 5 , 6 While a wide variety of closed shell organic molecules have been shown to behave as competent electron transfer catalysts in photoredox reactions, there are only limited reports of PET reactions involving neutral organic radicals as an excited state donor or acceptor. This is perhaps somewhat unsurprising in light of previously reported doublet excited state lifetimes for neutral organic radicals, which are typically several orders of magnitude shorter than singlet lifetimes for known transition metal photoredox catalysts. 7 – 11 Herein we document the discovery, characterization, and reactivity of a neutral acridine radical with a maximum excited state oxidation potential of −3.36 V vs. SCE: significantly more reducing than elemental lithium and marking it as one of the most potent chemical reductants reported. 12 Spectroscopic, computational, and chemical studies indicate that the formation of a twisted intramolecular charge transfer species enables the population of higher energy doublet excited states, leading to the observed potent photoreductant behavior. We demonstrate that this catalytically-generated PET catalyst facilitates several chemical reactions that typically require alkali metal reductants and bodes well for the adoption of this system in additional organic transformations requiring dissolving metal reductants.
Photoredox catalysis is a rapidly evolving platform for synthetic methods development. The prominent use of acridinium salts as a sustainable option for photoredox catalysts has driven the development of more robust and synthetically useful versions based on this scaffold. However, more complicated syntheses, increased cost, and limited commercial availability have hindered the adoption of these catalysts by the greater synthetic community. By utilizing the direct conversion of a xanthylium salt into the corresponding acridinium as the key transformation, we present an efficient and scalable preparation of the most synthetically useful acridinium reported to date. This divergent strategy also enabled the preparation of a suite of novel acridinium dyes, allowing for a systematic investigation of substitution effects on their photophysical properties.
We report a formal [4+2] cycloaddition reaction of styrenes under visible-light catalysis. Two styrene molecules with different electronic or steric properties were found to react with each other in good yield and excellent chemo- and regioselectivity. This reaction provides direct access to polysubstituted tetralin scaffolds from readily available styrenes. Sophisticated tricyclic and tetracyclic tetralin analogues were prepared in high yield and up to 20/1 diasteroselectivity from cyclic substrates.
Aldehydes are among the most versatile functional groups for synthetic chemistry. However, access to polysubstituted alkyl aldehydes is very limited and requires lengthy synthetic routes that involve multiple-step functional-group conversion. This paper reports a one-step synthesis of polysubstituted aldehydes from readily available olefin substrates using visible-light photoredox catalysis. Despite a number of competing reaction pathways, commercial styrenes react with vinyl ethers selectively in the presence of an acridinium salt photooxidant and a disulfide hydrogen-atom-transfer catalyst under blue LED irradiation. Alkyl aldehydes with different substitution patterns are prepared in good yields. This strategy can be applied to structurally sophisticated substrates.
A range of alkene-linked phenols are generally and reliably dearomatized specifically at their ortho-positions to create all-carbon quaternary stereogenic centers at the corresponding spiro-ring junctions, thus establishing a viable solution to the long-standing synthetic challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.