SummaryHuman pluripotent stem cells (hPSCs) maintain a highly fragmented mitochondrial network, but the mechanisms regulating this phenotype remain unknown. Here, we describe a non-cell death function of the anti-apoptotic protein, MCL-1, in regulating mitochondrial dynamics and promoting pluripotency of stem cells. MCL-1 is induced upon reprogramming, and its inhibition or knockdown induces dramatic changes to the mitochondrial network as well as loss of the key pluripotency transcription factors, NANOG and OCT4. Aside from localizing at the outer mitochondrial membrane like other BCL-2 family members, MCL-1 is unique in that it also resides at the mitochondrial matrix in pluripotent stem cells. Mechanistically, we find MCL-1 to interact with DRP-1 and OPA1, two GTPases responsible for remodeling the mitochondrial network. Depletion of MCL-1 compromised the levels and activity of these key regulators of mitochondrial dynamics. Our findings uncover an unexpected, non-apoptotic function for MCL-1 in the maintenance of mitochondrial structure and stemness.
CUL9 is a non-canonical and poorly characterized member of the largest family of E3 ubiquitin ligases known as the Cullin RING ligases (CRLs). Most CRLs play a critical role in developmental processes, however, the role of CUL9 in neuronal development remains elusive. We determined that deletion or depletion of CUL9 protein causes aberrant formation of neural rosettes, an in vitro model of early neuralization. In this study, we applied mass spectrometric approaches in human pluripotent stem cells (hPSCs) and neural progenitor cells (hNPCs) to identify CUL9 related signaling pathways that may contribute to this phenotype. Through LC-MS/MS analysis of immunoprecipitated endogenous CUL9, we identified several subunits of the APC/C, a major cell cycle regulator, as potential CUL9 interacting proteins. Knockdown of the APC/C adapter protein FZR1 resulted in a significant increase in CUL9 protein levels, however, CUL9 does not appear to affect protein abundance of APC/C subunits and adapters or alter cell cycle progression. Quantitative proteomic analysis of CUL9 KO hPSCs and hNPCs identified protein networks related to metabolic, ubiquitin degradation, and transcriptional regulation pathways that are disrupted by CUL9 deletion in both hPSCs. No significant changes in oxygen consumption rates or ATP production were detected in either cell type. The results of our study build on current evidence that CUL9 may have unique functions in different cell types and that compensatory mechanisms may contribute to the difficulty of identifying CUL9 substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.