Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use.
There has been much debate in the recent scientific literature regarding the possible ability to increase gross efficiency in cycling via training. Using cross-sectional study designs, researchers have demonstrated no significant differences in gross efficiency between trained and untrained cyclists. Reviewing this literature provides evidence to suggest that methodological inadequacies may have played a crucial role in the conclusions drawn from the majority of these studies. We present an overview of these studies and their relative shortcomings and conclude that in well-controlled and rigorously designed studies, training has a positive influence upon gross efficiency. Putative mechanisms for the increase in gross efficiency as a result of training include, muscle fibre type transformation, changes to muscle fibre shortening velocities and changes within the mitochondria. However, the specific mechanisms by which training improves gross efficiency and their impact on cycling performance remain to be determined.
The Pawsey Supercomputing Centre has been running a variety of education, training and outreach activities addressed to all Australian researchers for a number of years. Based on experience and user feedback we have developed a mix of on-site and online training, roadshows, user forums and hackathon-type events. We have also developed an open repository of materials covering different aspects of HPC systems usage, parallel programming techniques as well as cloud and data resources usage. In this paper, we will share our experience in using different learning methods and tools to address specific educational and training purposes. The overall goal is to emphasise that there is no universal learning solution, instead, various solutions and platforms need to be carefully selected for different groups of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.