I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally  0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.
a b s t r a c tA new model for the yield stress in superalloys accounting for unimodal and multimodal c 0 size distributions is presented. A critique of the classic models on c 0 shearing is presented and important features not previously considered are incorporated in our model. This is extended to account for multimodal particle size distribution effects by weighting the individual particle contribution to the total strength. This analysis is focused on powder metallurgy alloys. The yield stress and particle strengthening are predicted for eight superalloys containing wide variations in initial microstructure, composition and at temperatures up to 700°C. We demonstrate through a theoretical approach that the strength of alloys with multimodal c 0 is lower than those with unimodal c 0 radius in the vicinity of 10-30 nm. For the first time, a parameter-free physics-based model is able to predict the yield stress in superalloys with complex microstructures, including unimodal and multimodal c 0 size. This has been possible by removing limitations inherent to the classical models. Such approach also enables critical evaluation of the relevant factors contributing to the yield strength of polycrystalline superalloys.
This paper examines the idea that reversible hysteresis in MAX phases is caused by the formation, growth and collapse of unstable, or incipient, kink bands. In situ X-ray diffraction of polycrystalline Ti3SiC2 in compression showed that residual elastic lattice strains developed during the first loading cycle and remained approximately constant afterwards. These residual strains were compressive in grains with a low Schmid factor and tensile in grains with a high Schmid factor, consistent with previous observations of plastically deformed hexagonal metals. In contrast, incipient kink bands would be expected to collapse completely, without any residual strain. Elastoplastic self-consistent simulations showed that reversible hysteresis is predicted if some grains yield by slip on the basal plane, while others remain predominantly elastic, giving both the experimentally observed magnitude of the work dissipated and its dependence on the maximum applied stress. The reversible hysteresis in single crystals was studied by cyclically indenting thin films of Ti3SiC2 and Ti3SiC2/TiC multilayers on Al2O3 substrates. The work dissipated in the multilayer films was greater than in Ti3SiC2 alone, despite the reduction in volume fraction of Ti3SiC2. Reversible hysteresis was also observed during indentation of single-crystal cubic MgO, demonstrating that this behaviour can occur if there are insufficient slip systems to accommodate the strain around the indentation. These results show that reversible hysteresis is associated with conventional dislocation flow, without the need for unstable kinking
We report the atomic-scale structure of a Zn₁₅₂Al-borate layered double hydroxide (LDH) nanosheet, as determined by reverse Monte Carlo (RMC) modelling of X-ray total scattering data. This study involves the extension of the RMC method to enable structural refinement of two-dimensional nanomaterials. The refined LDH models show the intra-layer geometry in this highly-exfoliated phase to be consistent with that observed in crystalline analogues, with the reciprocal-space scattering data suggesting a disordered arrangement of the Zn(2+) and Al(3+) cations within the nanosheet. The approach we develop is generalisable and so offers a method of characterising the structures of arbitrary nanosheet phases, including systems that support complex forms of disorder within the nanosheets themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.