Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer's disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C99 23−55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarsegrained models. We demonstrate that the C99 23−55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C99 1−55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition.nderstanding the structural and thermodynamic properties of transmembrane (TM) helical dimers is of fundamental importance to molecular biology. It is known that the association of "bitopic" proteins, having single pass TM helical domains, is essential to immunoreceptors and protein kinases that play critical roles in cellular function. Computational and experimental studies have provided insight into the role of sequence-specific interactions stabilizing helix dimerization (1, 2). Examples include the heptad repeat motif responsible for the stability of coiled-coils in GCN4 phospholamban (3) and the M2 proton channel (4), the role of the GxxxG motif in stabilizing TM helix-helix association in systems including the glycophorin A (GpA) homodimer (5, 6), found in the human erythrocyte membrane, and GxxxG and heptad repeat motifs, which play a role in stabilizing homodimers of APP-C99 (C99), the 99-aa C-terminal fragment of the amyloid precursor protein (APP) (7,8).The amyloid β (Aβ) peptide aggregation pathway, known to be crucial to the evolution of Alzheimer's disease (AD), begins with the cleavage of C99 by γ-secretase leading to the formation of a number of isoforms of Aβ. The formation of homodimers of C99 has been proposed to be critical to the mechanism by which C99 is cleaved by γ-secretase, a process that is known to dep...
When BaZrO(3) is doped with Y in 12.5% of Zr sites, density functional theory with the PBE functional predicts octahedral distortions within a cubic phase yielding a greater variety of proton binding sites than undoped BaZrO(3). Proton binding sites, transition states, and normal modes are found and used to calculate transition state theory rate constants. The binding sites are used to represent vertices in a graph. The rate constants connecting binding sites are used to provide weights for graph edges. Vertex and color coding are used to find proton conduction pathways in BaZr(0.875)Y(0.125)O(3). Many similarly probable proton conduction pathways which can be periodically replicated to yield long range proton conduction are found. The average limiting barriers at 600 K for seven step and eight step periodic pathways are 0.29 and 0.30 eV, respectively. Inclusion of a lattice reorganization barrier raises these to 0.42 and 0.33 eV, respectively. The majority of the seven step pathways have an interoctahedral rate limiting step while the majority of the eight step pathways have an intraoctahedral rate limiting step. While the average limiting barrier of the seven step periodic pathway including a lattice reorganization barrier is closer to experiment, how to appropriately weight different length periodic pathways is not clear. Likely, conduction is influenced by combinations of different length pathways. Vertex and color coding provide useful ways of finding the wide variety of long range proton conduction pathways that contribute to long range proton conduction. They complement more traditional serial methods such as molecular dynamics and kinetic Monte Carlo.
The 99 amino acid C-terminal fragment of amyloid precursor protein (C99), consisting of a single transmembrane (TM) helix, is known to form homodimers. Homodimers can be processed by γ-secretase to produce amyloid-β (Aβ) protein, which is implicated in Alzheimer’s disease (AD). While knowledge of the structure of C99 homodimers is of great importance, experimental NMR studies and simulations have produced varying structural models, including right-handed and left-handed coiled-coils. In order to investigate the structure of this critical protein complex, simulations of the C9915–55 homodimer in POPC membrane bilayer and DPC surfactant micelle environments were performed using a multiscale approach that blends atomistic and coarse-grained models. The C9915–55 homodimer adopts a dominant right-handed coiled-coil topology consisting of three characteristic structural states in a bilayer, only one of which is dominant in the micelle. Our structural study, which provides a self-consistent framework for understanding a number of experiments, shows that the energy landscape of the C99 homodimer supports a variety of slowly interconverting structural states. The relative importance of any given state can be modulated through environmental selection realized by altering the membrane or micelle characteristics.
In the present paper, the authors focus on proton conduction pathways in a cubic perovskite KTaO(3) and an orthorhombic perovskite SrZrO(3). Density functional theory with a generalized gradient approximation is used to find proton binding sites. The nudged elastic band method is used to find transition states between minima. With this potential energy map of binding and transition states, adjacency matrices and their analogs identify four types of conduction paths in KTaO(3). Distortions from these paths are seen in SrZrO(3). In both cases, the lowest energy path has an intraoctahedral transfer rate-limiting barrier. A Fourier analysis of the OH stretch in ab initio molecular dynamics simulations revealed a strongly redshifted OH stretch in SrZrO(3) relative to KTaO(3). Hence, an orthorhombic system with a lowest energy conduction path limited by an intraoctahedral barrier can exhibit a redshifted OH stretch.
Novel adjustments are introduced to the docking algorithm, DOCK/PIERR, for the purpose of predicting structures of transmembrane protein complexes. Incorporating knowledge about the membrane environment is shown to significantly improve docking accuracy. The extended version of DOCK/PIERR is shown to perform comparably to other leading docking packages. This membrane version of DOCK/PIERR is applied to the prediction of coiled-coil homodimer structures of the transmembrane region of the C-terminal peptide of amyloid precursor protein (C99). Results from MD simulation of the C99 homodimer in POPC bilayer and docking are compared. Docking results are found to capture key aspects of the homodimer ensemble, including the existence of three topologically distinct conformers. Furthermore, the extended version of DOCK/PIERR is successful in capturing the effects of solvation in membrane and micelle. Specifically, DOCK/PIERR reproduces essential differences in the homodimer ensembles simulated in POPC bilayer and DPC micelle, where configurational entropy and surface curvature effects bias the handedness and topology of the homodimer ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.