The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
Mounting evidence indicates that Smad proteins are required for TGF beta signaling, but the way(s) in which Smad proteins propagate this signal is unclear. We found that two human Smad proteins (Smad3 and Smad4) could specifically recognize an identical 8 bp palindromic sequences (GTCTAGAC). Tandem repeats of this palindrome conferred striking TGF beta responsiveness to a minimal promoter. This responsiveness was abrogated by targeted deletion of the cellular Smad4 gene. These results define a novel biochemical property of Smad proteins that is likely to play a direct role in the biologic responses to TGF beta and related ligands.
The high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical effi cacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway. Here, we describe the identifi cation and characterization of SCH772984, a novel and selective inhibitor of ERK1/2 that displays behaviors of both type I and type II kinase inhibitors. SCH772984 has nanomolar cellular potency in tumor cells with mutations in BRAF , NRAS , or KRAS and induces tumor regressions in xenograft models at tolerated doses. Importantly, SCH772984 effectively inhibited MAPK signaling and cell proliferation in BRAF or MEK inhibitor-resistant models as well as in tumor cells resistant to concurrent treatment with BRAF and MEK inhibitors. These data support the clinical development of ERK inhibitors for tumors refractory to MAPK inhibitors. SIGNIFICANCE: BRAF and MEK inhibitors have activity in MAPK-dependent cancers with BRAF or RAS mutations. However, resistance is associated with pathway alterations resulting in phospho-ERK reactivation. Here, we describe a novel ERK1/2 kinase inhibitor that has antitumor activity in MAPK inhibitor-naïve and MAPK inhibitor-resistant cells containing BRAF or RAS mutations. Cancer Discov; 3(7); 742-50.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.