Synopsis
Body size and body-size shifts broadly impact life-history parameters of all animals, which has made accurate body-size estimates for extinct taxa an important component of understanding their paleobiology. Among extinct crocodylians and their precursors (e.g., suchians), several methods have been developed to predict body size from suites of hard-tissue proxies. Nevertheless, many have limited applications due to the disparity of some major suchian groups and biases in the fossil record. Here, we test the utility of head width (HW) as a broadly applicable body-size estimator in living and fossil suchians. We use a dataset of sexually mature male and female individuals (n = 76) from a comprehensive sample of extant suchian species encompassing nearly all known taxa (n = 22) to develop a Bayesian phylogenetic model for predicting three conventional metrics for size: body mass, snout–vent length, and total length. We then use the model to estimate size parameters for a select series of extinct suchians with known phylogenetic affinity (Montsechosuchus, Diplocynodon, and Sarcosuchus). We then compare our results to sizes reported in the literature to exemplify the utility of our approach for a broad array of fossil suchians. Our results show that HW is highly correlated with all other metrics (all R2≥0.85) and is commensurate with femoral dimensions for its reliably as a body-size predictor. We provide the R code in order to enable other researchers to employ the model in their own research.
Carnivorans possess relatively large brains compared to most other mammalian clades. Factors like environmental complexity (Cognitive Buffer Hypothesis) and diet quality (Expensive-Tissue Hypothesis) have been proposed as mechanisms for encephalization in other large-brained clades. We examine whether the Cognitive Buffer and Expensive-Tissue Hypotheses account for brain size variation within Carnivora. Under these hypotheses, we predict a positive correlation between brain size and environmental complexity or protein consumption. Relative endocranial volume (PGLS residual from species mean body mass) and nine environmental and dietary variables were collected from the literature for 148 species of terrestrial and marine carnivorans. We found that the correlation between relative brain volume and environment and diet differed among clades, a trend consistent with other larger brained vertebrates (i.e., Primates, Aves). Mustelidae and Procyonidae demonstrate larger brains in species with higher quality diets, consistent with the Expensive-Tissue Hypothesis, while in Herpestidae correlations between relative brain size and environment are consistent with the Cognitive Buffer Hypothesis. Our results indicate that carnivorans may have evolved relatively larger brains under similar selective pressures as primates despite the considerable differences in life history and behavior between these two clades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.