In this paper, the global robust exponential stability of interval neural networks with delays and inverse Hölder neuron activation functions is considered. By using linear matrix inequality (LMI) techniques and Brouwer degree properties, the existence and uniqueness of the equilibrium point are proved. By applying Lyapunov functional approach, a sufficient condition which ensures that the network is globally robustly exponentially stable is established. A numerical example is provided to demonstrate the validity of the theoretical results.
This paper presents a nonlinear projection neural network for solving interval quadratic programs subject to box-set constraints in engineering applications. Based on the Saddle point theorem, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the interval quadratic optimization problems. By employing Lyapunov function approach, the global exponential stability of the proposed neural network is analyzed. Two illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.