Heat shock factor 1 (HSF1) is a transcription factor involved in the heat shock response and other biological processes. We have unveiled here an important role of HSF1 in acute lung injury (ALI). HSF1 knockout mice were used as a model of lipopolysaccharide- (LPS-) induced ALI. Lung damage was aggravated, and macrophage infiltration increased significantly in the bronchoalveolar lavage fluid (BALF) and lung tissue of HSF-/- mice compared with the damage observed in HSF1+/+ mice. Upon LPS stimulation, HSF-/- mice showed higher levels of monocyte chemoattractant protein-1 (MCP-1) in the serum, BALF, and lung tissue and increased the expression of MCP-1 and chemokine (C-C motif) receptor 2 (CCR2) on the surface of macrophages compared with those in HSF1+/+. Electrophoretic mobility shift assays (EMSA) and dual luciferase reporter assays revealed that HSF1 could directly bind to heat shock elements (HSE) in the promoter regions of MCP-1 and its receptor CCR2, thereby inhibiting the expression of both genes. We concluded that HSF1 attenuated LPS-induced ALI in mice by directly suppressing the transcription of MCP-1/CCR2, which in turn reduced macrophage infiltration.
Sepsis is a life-threatening complication of infection closely associated with coagulation abnormalities. Heat shock factor 1 (HSF1) is an important transcription factor involved in many biological processes, but its regulatory role in blood coagulation remained unclear. We generated a sepsis model in HSF1-knockout mice to evaluate the role of HSF1 in microthrombosis and multiple organ dysfunction. Compared with septic wild-type mice, septic HSF1-knockout mice exhibited a greater degree of lung, liver, and kidney tissue damage, increased fibrin/fibrinogen deposition in the lungs and kidneys, and increased coagulation activity. RNA-seq analysis revealed that tissue-type plasminogen activator (t-PA) was upregulated in the lung tissues of septic mice, and the level of t-PA was significantly lower in HSF1-knockout mice than in wild-type mice in sepsis. The effects of HSF1 on t-PA expression were further validated in HSF1-knockout mice with sepsis and in vitro in mouse brain microvascular endothelial cells using HSF1 RNA interference or overexpression under lipopolysaccharide stimulation. Bioinformatics analysis, combined with electromobility shift and luciferase reporter assays, indicated that HSF1 directly upregulated t-PA at the transcriptional level. Our results reveal, for the first time, that HSF1 suppresses coagulation activity and microthrombosis by directly upregulating t-PA, thereby exerting protective effects against multiple organ dysfunction in sepsis.
Background: Lipopolysaccride-induced myocardial injury was characterized by frequent mitochondrial dysfunction. Our previous studies found that nucleolin (NCL) played important protective roles in myocardial ischemia-reperfusion injury. Recently, it has been found that NCL has a protective effect on LPS-induced myocardial injury in vivo. However, the exact underlying mechanisms that how NCL protects myocardium against the LPS-induced myocardial injury remains unclear. Objective:The aim of the study is to investigate the protective role of NCL in LPS-induced myocardial injury from the aspect of mitochondrial biogenesis. Methods: The cardiac-specific NCL-knockout (NCL −/− ) or NCL f/f mice were injected with LPS (10 mg/kg) to induce LPS-induced myocardial injury. The supernatant generated after LPS stimulation of macrophages was used as the conditioned medium to stimulate H9C2 and established the injured cell model. Analysis of mRNA stability, RNA-binding protein immunoprecipitation assay, and luciferase reporter assay were performed to detect the mechanism by which NCL regulated the expression of PGC-1α. Results: The expression of NCL and PGC-1α was elevated in cardiac tissue and cardiomyocytes during LPS-induced myocardial injury. The cardiac-specific NCL-knockout decreased PGC-1α expression, inhibited mitochondrial biogenesis, and increased cardiomyocytes death during LPS-induced myocardial injury in vitro and in vivo. In contrast, the overexpression of NCL could improve mitochondrial biogenesis in H9C2 cells. Moreover, the analysis of mRNA stability and luciferase reporter assay revealed that the interaction between NCL and PGC-1α significantly promoted the stability of PGC-1α mRNA, thereby upregulating the expression of PGC-1α and exerting a cardioprotective effect. In addition, the activation of PGC-1α diminished the detrimental effects of NCL knockdown on mitochondrial biogenesis in vitro and in vivo. Conclusions: Nucleolin upregulated the gene expression of PGC-1α by directly binding to the 5′-UTR of PGC-1α mRNA and increasing its mRNA stabilities, then promoted mitochondrial biogenesis, and played protective effect on cardiomyocytes during LPS-induced myocardial injury. Taken together, all these data showed that NCL activated PGC-1α to rescue cardiomyocytes from LPS-induced myocardial injury insult, suggesting that the cardioprotective role of NCL might be a promising prospect for clinical treatment of patients with endotoxemia.
Sepsis is a life-threatening complication of infection and is closely associated with coagulation abnormalities. Heat shock factor 1 (HSF1) is an important transcription factor involved in heat shock response and other biological processes. However, whether HSF1 plays regulatory roles in blood coagulation is still unclear. In this study, a sepsis model was generated in HSF1-knockout mice using caecal ligation and puncture, and the role of HSF1 in microthrombosis and multiple organ dysfunction was evaluated. Notably, lung, liver, and kidney tissues were significantly damaged, fibrin/fibrinogen deposition in the lungs and kidneys was increased, and coagulation activity was gradually increased over time in mice with sepsis; these changes were more obvious in HSF-/- mice than in HSF1+/+ mice. RNA-seq analysis of lung tissues showed that tissue-type plasminogen activator (t-PA) was upregulated in septic mice and was significantly lower in HSF1-knockout mice than in wild-type mice. The effects of HSF1 on t-PA expression were further validated in HSF1-knockout mice with sepsis and in bEnd.3 mouse brain microvascular endothelial cells in vitro using HSF1 RNA interference or overexpression under lipopolysaccharide stimulation. Bioinformatics analysis of the t-PA promoter sequence, combined with electromobility shift and luciferase reporter assays, showed that HSF1 directly up-regulated t-PA at the transcriptional level. Therefore, our results revealed, for the first time, that HSF1 suppressed coagulation activity and microthrombosis by directly up-regulating t-PA, thereby playing a protective role against multiple organ dysfunction in sepsis.
tRNA-derived small RNAs (tsRNAs) as a novel non-coding RNA have been studied in many cardiovascular diseases, but the relationship between tsRNAs and septic cardiomyopathy has not been investigated. We sought to analyze changes of the expression profile of tsRNAs in septic cardiomyopathy and reveal an important role for tsRNAs. Methods: We constructed a sepsis model by cecal ligation and puncture (CLP) in mice, and microarray analysis was used to find differentially expressed tsRNAs. Quantitative real-time PCR was used to verify the expression of tsRNAs and the interference effect of angiogenin (ANG), a key nuclease producing tsRNAs. Bioinformatics analysis was used to predict target genes and functions. CCK-8 and LDH release assays were used to detect cell viability and cell death. Results: A total of 158 tsRNAs were screened, of which 101 were up-regulated and 57 were down-regulated. A total of 8 tsRNAs were verified by qPCR, which was consistent with microarray results. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses suggest that these tsRNAs may be associated with the Wnt signaling pathway and participate in cellular process. The expression of tsRNAs decreased after the interference of the key nuclease ANG, while CCK-8 suggested a corresponding decrease in cell viability and an increase in the release of LDH (cell death), indicating that tsRNAs can protect cardiomyocytes during the development of septic cardiomyopathy, reduced cardiomyocyte death. Conclusions: A total of 158 tsRNAs changed significantly in septic cardiomyopathy, and these tsRNAs may play a protective role in the development of septic cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.