Cannabinoid system plays an important role in controlling neuronal excitability and brain function. On the other hand, modulation of gamma-aminobutyric acid (GABA) transmission is one of the initial strategies for the treatment of seizure. The aim of the present study was to evaluate possible interaction between cannabinoidergic and GABAergic systems in pentylenetetrazole (PTZ)-induced acute seizure in rat. Drugs were administered by intracerebroventricular (i.c.v.) administration 20 min before a single intraperitoneal (i.p.) injection of PTZ and the latency to the first generalized tonic-clonic seizure was measured. Both the cannabinoid receptor agonist WIN55212-2 (10, 30, 50 and 100 μg/rat) and the GABA-A receptor agonist isoguvacine (IGN; 10, 30 and 50 μg/rat) significantly increased the latency of seizure occurrence. Moreover, the fatty acid amide hydrolase inhibitor URB597 showed no anticonvulsive effect while the monoacyl glycerol lipase (MAGL) inhibitor URB602 (10, 50 and 100 μg/rat) protected rats against PTZ-induced seizure. Moreover, co-administration of IGN and cannabinoid compounds attenuated the anticonvulsant action of both WIN55212-2 and IGN in this model of seizure. Our data suggests that exogenous cannabinoid WIN55212-2 and MAGL inhibitor URB602 imply their antiseizure action in part through common brain receptorial system. Moreover, the antagonistic interaction of cannabinoids and IGN in protection against PTZ-induced seizure could suggest the involvement of GABAergic system in their anticonvulsant action.
The anticonvulsant activities of cannabinoid compounds have been shown in various models of seizure and epilepsy. At least, part of antiseizure effects of cannabinoid compounds is mediated through calcium (Ca(2+)) channels. The L-type Ca(2+) channels have been shown to be important in various epilepsy models. However, there is no data regarding the role of L-type Ca(2+) channels in protective action of cannabinoids on acute and chronic models of seizure. In this study, the effects of cannabinoid compounds and L-type Ca(2+) channels blockers, either alone or in combination were investigated using acute model of pentylenetetrazole (PTZ)-induced seizure in mice and chronic model electrical kindling of amygdala in rats. Pretreatment of mice with both cannabinoid CB1 receptor agonist arachidonyl-2'-chloroethylamide (ACEA) and endocannabinoid degradating enzyme inhibitor cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597) produced a protective effect against PTZ-induced seizure. Administration of various doses of the two L-type Ca(2+) channel blockers verapamil and diltiazem did not alter PTZ-induced seizure threshold. However, co-administration of verapamil and either ACEA or URB597 attenuated the protective effect of cannabinoid compounds against PTZ-induced seizure. Also, pretreatment of mice with diltiazem blocked the anticonvulsant activity of both ACEA and URB597. Moreover, (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2), the non-selective cannabinoid CB1 and CB2 receptor agonist showed anticonvulsant effect in amygdala-kindled rats. However, co-administration of WIN55,212-2 and verapamil attenuated the protective properties of WIN55,212-2. Our results showed that the anticonvulsant activity of cannabinoid compounds is mediated, at least in part, by L-type Ca(2+) channels in these two models of convulsion and epilepsy.
Background: Accidental ingestion or consumption of supra-therapeutic doses of methadone can result in neurological sequelae in humans. We aimed to determine the neurological deficits of methadone-poisoned patients admitted to a referral poisoning hospital using brain magnetic resonance (MR) and diffusion weighted (DW) imaging. Methods: In this retrospective study, brain MRIs of the patients admitted to our referral center due to methadone intoxication were reviewed. Methadone intoxication was confirmed based on history, congruent clinical presentation, and confirmatory urine analysis. Each patient had an MRI with Echo planar T1, T2, FLAIR, and DWI and apparent deficient coefficient (ADC) sequences without contrast media. Abnormalities were recorded and categorized based on their anatomic location and sequence. Results: Ten patients with abnormal MRI findings were identified. Eight had acute-and two had delayed-onset encephalopathy. Imaging findings included bilateral confluent or patchy T2 and FLAIR high signal intensity in cerebral white matter, cerebellar involvement, and bilateral occipito-parietal cortex diffusion restriction in DWI. Internal capsule involvement was identified in two patients while abnormality in globus pallidus and head of caudate nuclei were reported in another. Bilateral cerebral symmetrical confluent white matter signal abnormality with sparing of subcortical U-fibers on T2 and FLAIR sequences were observed in both patients with delayed-onset encephalopathy. Conclusions: Acute-and delayed-onset encephalopathies are two rare adverse events detected in methadoneintoxicated patients. Brain MRI findings can be helpful in detection of methadone-induced encephalopathy.
Methadone is used as a substitution drug for the treatment of opioid dependence and chronic pain. Despite its widespread use and availability, there is a serious concern with respect to the relative safety of methadone. The purpose of this study was to characterize how acute methadone overdose affects the cognitive and motor performance of naïve healthy rats. The methadone overdose was induced by administering an acute toxic dose of methadone (15 mg/kg; ip; the equivalent dose of 80% of LD50) to adolescent rats. Resuscitation using a ventilator pump along with a single dose of naloxone (2 mg/kg; ip) was administered following the occurrence of apnea. The animals which were successfully resuscitated divided randomly into three apnea groups that evaluated either on day 1, 5, or 10 post-resuscitation (M/N-Day 1, M/N-Day 5, and M/N-Day 10 groups) in the Y-maze and novel object memory recognition tasks as well as pole and rotarod tests. The data revealed that a single toxic dose of methadone had an adverse effect on spontaneous behavior. In addition, Recognition memory impairment was observed in the M/N-Day 1, 5, and 10 groups after methadone-induced apnea. Further, descending time in the M/N-Day 5 group increased significantly in comparison with its respective Saline control group. The overall results indicate that acute methadone-overdose-induced apnea produced delay-dependent cognitive and motor impairment. We suggest that methadone poisoning should be considered as a possible cause of delayed neurological disorders, which might be transient, in some types of memory or motor performance in naïve healthy rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.