The integrons, as the mobile exogenous elements, play a prominent role in the spreading of antimicrobial resistance genes from Pseudomonas aeruginosa clinical isolates to other bacteria. This study aimed to investigate the frequency of class 1 integrons andresistance gene cassettes carrying by them in clinical isolates as well as multidrug resistant P. aeruginosa. Materials and Methods: A total of 100 clinical isolates of P. aeruginosa were collected from 5 hospitals in Mazandaran province, north Iran. The antibiotic susceptibility pattern of the isolates was evaluated using the disk agar diffusion method. Genomic DNAs were extracted and then the presence of class 1 integrons was detected by the PCR test. All PCR products of the positive isolates were sequenced for the detection of resistance gene cassettes by the Sanger method. Results: Forty-one percent of the clinical isolates were multi-drug resistant. Also, 42% of the isolates were contained class 1 integron, and 61.9% of the integron positive isolates were detected as MDR. We detected 10 different gene cassettes sizing from 0.6 to 3.5 kb in the present study. The sequencing analysis of the internal variable regions of the class 1 integrons showed that the 0.75 kb gene cassette (aadB) was the most frequent resistance gene (54.76%) among all clinical isolates, as well as the MDR isolates. Other resistance genes detected in this study were included: aadA6-orfD (35.71%), aacA4-bla OXA-10 (21.42%), aadB-aacA4-bla OXA-10 (19.04%), bla OXA-10-aacA4-VIM1 (11.9%), aacA4-cat B10 (7.14%), aacA5-aadA1-cmlA5 (7.14%), bla OXA31-aadA2 (4.76%), and aac(3)-Ic-aac A5-cmlA5 (4.76%). To the best of our knowledge, bla OXA-10-aacA4-VIM1 cassette array is detected for the first time in this study. Conclusion: The treatment of infections caused by P. aeruginosa in this region of Iran is a major problem due to the high prevalence of class 1 integrons. It seems that the high prescription of beta-lactams and aminoglycosides for the treatment of these infections may be replaced by other combination therapy stewardships.
In recent years, the prevalence of resistance to aminoglycosides among clinical isolates of Pseudomonas aeruginosa is increasing. The aim of this study was to investigate the role of aminoglycoside-modifying enzymes (AMEs) in resistance to aminoglycosides in clinical isolates of P. aeruginosa. The clinical isolates were collected from different hospitals. Disk agar diffusion test was used to determine the antimicrobial resistance pattern of the clinical isolates, and the minimum inhibitory concentration of aminoglycosides was detected by microbroth dilution method. The PCR was performed for discovery of aminoglycoside-modifying enzyme-encoding genes. Among 100 screened isolates, 43 (43%) isolates were resistant to at least one tested aminoglycosides. However, 13 (13%) isolates were resistant to all tested aminoglycosides and 37 isolates were detected as multidrug resistant (MDR). The resistance rates of P. aeruginosa isolates against tested antibiotics were as follows: ciprofloxacin (41%), piperacillin-tazobactam (12%), cefepime (32%), piperacillin (26%), and imipenem (31%). However, according to the MIC method, 13%, 32%, 33%, and 37% of the isolates were resistant to amikacin, gentamicin, tobramycin, and netilmicin, respectively. The PCR results showed that AAC(6 ′ )-Ib was the most commonly (26/43, 60.4%) identified AME-encoding gene followed by AAC(6 ′ )-IIa (41.86%), APH(3 ′ )-IIb (34.8%), ANT(3 ″ )-Ia (18.6), ANT(2 ″ )-Ia (13.95%), and APH(3 ″ )-Ib (2.32%). However, APH(3 ′ )-Ib was not found in any of the studied isolates. The high prevalence of AME-encoding genes among aminoglycoside-resistant P. aeruginosa isolates in this area indicated the important role of AMEs in resistance to these antibiotics similar to most studies worldwide. Due to the transmission possibility of these genes between the Gram-negative bacteria, we need to control the prescription of aminoglycosides in hospitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.