The existence of dopamine (DA)-melatonin (aMT) relationships is well documented in several brain areas of the mammalian central nervous system such as the retina and hypothalamus or the nigrostriatal system. For instance, aMT tempers 1 methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal damage in C57BL/6 mice. In this mouse strain however, rhythmic production of aMT and its possible interaction with striatal DA is still unclear. In the present work we investigated circadian variations in pineal production of aMT and striatal DA levels in C57BL/6 mice. Effects of pinealectomy and aMT administration were also assessed. Intact, pinealectomized and pinealectomized + aMT-treated mice and their respective control groups were sacrificed at six different times during the 24-hour period. In control animals, aMT displayed a circadian rhythm with a narrow peak at midnight. The peak of aMT coincided with the nadir of the DA rhythm present in the striatum. Shortly after the decrease of DA levels, an increase in 3,4-dihydroxyphenylacetic acid (DOPAC), the main DA metabolite, was observed. The rhythmic changes of DA and DOPAC levels in the striatum were blunted by pinealectomy, whereas administration of aMT (0.1–10 mg/kg) during 6 days to pinealectomized mice restored the rhythms in a dose-dependent manner. Striatal levels of 3-methoxytyramine and homovanillic acid did not change during the 24-hour cycle. The serotonergic system, assessed by the determination of 5-hydroxytryptamine and 5-hydroxyindole-3-acetic acid concentration in striatum, did not show significant time-dependent changes in control animals and was not affected by pinealectomy or aMT treatment. These data substantiate the existence of a link between pineal function, melatonin secretion and DA circadian rhythm in the mouse striatum.
Previous studies showed a synergistic effect of melatonin and deprenyl against dopamine (DA) autoxidation in vitro. Since oxidative stress is implicated in Parkinson's disease (PD), we explored the effects of melatonin plus deprenyl administration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in C57/Bl6 mice. Melatonin, but not deprenyl prevents the inhibition of mitochondrial complex I and the oxidative damage in nigrostriatal neurons induced by MPTP. With the dose used deprenyl recovers 50% DA levels and tyrosine hydroxylase activity depressed by the neurotoxin, normalizing locomotor activity of mice. Melatonin, which was unable to counteract MPTP-induced DA depletion and inhibition of tyrosine hydroxylase activity, potentiates the effect of deprenyl on catecholamine turnover and mice ambulatory activity. These results suggest a dissociation of complex I inhibition from DA depletion in this model of Parkinson's disease. The data also support that a combination of melatonin, which improves mitochondrial electron transport chain and reduces oxidative damage, and deprenyl, which promotes the specific function of the rescued neurons, i.e. DA turnover, may be a promising strategy for the treatment of PD.
We examined the effect of melatonin on brain levels of amino acids and nitric oxide (NO) after pentylenetetrazole (PTZ)-induced seizures in rats. Animals were treated with melatonin (10-160 mg/kg, i.p.) 30 min before PTZ administration (100 mg/kg, s.c.), and were killed 3 hr later. At the dose of 80 mg/kg, melatonin significantly increased the latency (5.7-12.7 min) and decreased the duration (31.2-18.4 s) of the first seizure, reducing PTZ induced mortality from 87.5 to 25%. After kill, brains were removed and neurotransmitters and nitrite levels measured in prefrontal cortex (PF), parieto-temporal cortex (PF), striatum (ST), hippocampus (HP) and brain stem (BS) by high performance liquid chromatography. PTZ treatment increased glutamine levels in all brain areas studied, without changes in glutamate, gamma-amino butyric acid (GABA) and glycine. Aspartate and taurine increased in PF and PT and in HS and PT, respectively. Melatonin administration displayed a dose-dependent effect. At doses of 10-40 mg/kg, melatonin counteracted the PTZ-induced glutamine increase and reduced both glutamate and aspartate levels in the studied areas, with minor changes in GABA and glycine content. At doses of 80 and 160 mg/kg, the levels of glutamine, and glutamate, and to a lesser extent aspartate increased, whereas serine levels did not change. These two doses of melatonin also increased taurine, GABA and glycine in most brain areas studied. Treatment with melatonin (40-160 mg/kg) significantly decreased nitrite content in PT cortex, ST and BS areas of epileptic rats, without changes in the other brain regions. The results suggest that the anticonvulsant property of melatonin involves a modulation of both brain amino acids and NO production.
Argan oil (AO) is rich in oleic and linoleic acids, polyphenols, sterols, and tocopherols. This composition gives it numerous beneficial pharmacological effects such as hypolipemiant, hypotensive, and antiproliferative. Oxidative stress is a mechanism of cell death induced by seizures and status epilepticus (SE). This study aims at investigating AO effects on (i) latency to first seizure, seizure severity, weight loss, mortality rate, (ii) lipid peroxidation level, nitrite level, and catalase activity in the hippocampus after SE induced by pilocarpine (PC). Wistar rats (1-month old) were daily administered by oral gavage with AO (1 ml/100 g/day) or with NaCl 0.9% during 2 months before receiving PC (400 mg/kg). After the PC injection, all groups were observed for 24 h. The catalase activity, the lipid peroxidation, and nitrite concentrations were measured using spectrophotometric methods. AO pretreatment increased the latency to first seizures, decreased the weight loss, and reduced mortality rate after SE. AO pretreatment produces significant decrease of the lipid peroxidation and nitrite levels. On the contrary, AO increased the catalase activity in rat hippocampus after seizures. For the first time, our results suggest that AO pretreatment is capable of attenuating seizure severity and oxidative stress in the hippocampus of Wistar rats. This indicates that AO may exhibit a neuroprotection against the temporal lobe epilepsy. Further investigations are in progress to confirm this pharmacological property.
We have previously proven that some synthetic kynurenines behave as antagonists of the N-methyl-d-aspartate receptor inhibiting neuronal subtype of nitric oxide synthase activity. We now investigate the anticonvulsant activity of four of these kynurenines in pentylenetetrazole (PTZ)-treated rats. The rats were treated with each kynurenine (10-160 mg/kg, s.c.) 30 min before PTZ administration (100 mg/kg, s.c.). Then, latency, duration and intensity of the first seizure and the percent animal survival were noted. PTZ-induced death was counteracted by high doses of kynurenines. Latency of the first seizure was significantly increased and its intensity reduced at the same doses, whereas the duration of the first seizure significantly decreased with doses of 20 mg/kg in most of the kynurenines tested. Three hours after PTZ administration, the surviving animals were sacrificed and the levels of brain amino acids and nitrite were measured. PTZ administration increased glutamate, glutamine, serine and taurine levels in different brain areas. High doses of kynurenines generally counteracted the effects of PTZ on excitatory amino acids, but they also reduced inhibitory aminoacids. However, the most consistent effect of kynurenines was the dose-dependent reduction of brain nitrite levels induced by PTZ. These results reveal a new family of anticonvulsant drugs that affect mainly to nitric oxide production in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.